Fonctionnement de l'outil Topo vers raster

L'outil Topo vers raster est une méthode d'interpolation spécialement destinée à la création de modèles numériques de terrain (MNT) hydrologiquement corrects. Il repose sur le programme ANUDEM développé par Michael Hutchinson (1988, 1989). Reportez-vous aux travaux d'Hutchinson et Dowling (1991) pour consulter un exemple d'application d'ANUDEM et pour obtenir des informations supplémentaires à ce sujet. Une brève présentation d'ANUDEM et des applications est donnée dans les travaux d'Hutchinson (1993). La version 4.6.3 d'ANUDEM est actuellement utilisée dans ArcGIS.

Topo vers raster interpole les valeurs d'altitude d'un raster en imposant des contraintes pour garantir :

Ainsi, il s'agit de l'unique interpolateur d'ArcGIS conçu particulièrement pour s'appliquer intelligemment à des entrées d'isolignes.

L'outil Topo vers raster - fichier est très apprécié, car il permet d'exécuter plusieurs fois l'outil Topo vers raster. En effet, il est souvent plus facile de modifier une seule entrée dans le fichier de paramètres et de relancer l'outil que de renseigner à chaque fois la boîte de dialogue de l'outil.

Le processus d'interpolation

Le processus d'interpolation a été conçu pour tirer parti des types de données en entrée couramment disponibles et des caractéristiques connues des surfaces d'altitude. Cette méthode repose sur une technique d'interpolation de différence finie itérative. Elle est optimisée pour garantir l'efficacité des calculs des méthodes d'interpolation locale, comme la méthode de pondération par l'inverse de la distance (IDW), sans perdre la continuité de la surface des méthodes d'interpolation globale, telles que la méthode de krigeage ou de spline. Il s'agit essentiellement d'une technique de spline d'une plaque fine discrétisée (Wahba, 1990) pour laquelle la pénalité de rugosité a été modifiée de manière à permettre au MNT ajusté de suivre les variations brusques du terrain, comme des cours d'eau et des crêtes.

L'eau est le principal facteur érosif déterminant la forme générale de la plupart des paysages. Pour cette raison, la majorité des terrains présentent de nombreux sommets (valeurs maximales locales) et peu de cuvettes (valeurs minimales locales), engendrant ainsi une structure de drainage connectée. L'outil Topo vers raster repose sur les surfaces connues et impose des contraintes au processus d'interpolation qui génère une structure de drainage connectée et une représentation correcte des crêtes et des cours d'eau. Cette condition de drainage imposée génère des surfaces de très haute précision avec moins de données en entrée. La quantité de données en entrée peut être inférieure à celle normalement requise pour décrire convenablement une surface avec des isolignes numérisées, ce qui permet de réduire les coûts associés à l'obtention de MNT fiables. En outre, la condition de drainage globale élimine quasiment les opérations de mise à jour ou de post-traitement liées à la suppression de cuvettes fictives sur la surface générée.

Le programme agit prudemment lorsqu'il supprime les cuvettes et n'impose pas de conditions de drainage sur des emplacements qui seraient en conflit avec les données d'altitude en entrée. De tels emplacements apparaissent normalement sous forme de cuvettes dans le fichier de diagnostic. Utilisez ces informations pour corriger les erreurs de données, notamment lors du traitement de jeux de données volumineux.

Le processus d'application du drainage

Le processus d'application du drainage permet de supprimer toutes les cuvettes du MNT en sortie qui n'ont pas été identifiées en tant que telles dans le jeu de données d'entité cuvettes en entrée. Le programme part de l'hypothèse que toutes les cuvettes non identifiées sont des erreurs dans la mesure où elles sont en principe rares dans les paysages naturels (Goodchild et Mark, 1987).

L'algorithme d'application du drainage tente de supprimer les cuvettes fictives en modifiant le MNT, en devinant la présence de lignes de drainage via le point d'échancrure le plus bas de la zone de drainage avoisinant chaque cuvette fictive. Il n'essaie pas de supprimer les cuvettes réelles fournies par la fonction Cuvettes. Puisque la suppression des cuvettes dépend de la tolérance d'altitude, le programme agit prudemment lorsqu'il supprime les cuvettes fictives. En d'autres termes, il ne supprime pas des cuvettes fictives qui seraient en conflit avec les données d'altitude en ne dépassant pas la valeur de tolérance 1.

L'application du drainage peut également être complétée par l'incorporation de données linéaires de cours d'eau. Cela est utile lorsqu'un placement des cours d'eau plus précis est nécessaire.

La fonction de drainage peut être désactivée, auquel cas la suppression des cuvettes est ignorée. Cela peut s'avérer utile si vous avez des données d'isolignes autres que des données d'altitude, par exemple de température, pour lesquelles vous souhaitez générer une surface.

Utilisation des données d'isolignes

Au départ, les isolignes constituaient la méthode la plus courante pour stocker et présenter des données d'altitude. Il s'est malheureusement avéré que cette méthode était également la plus difficile à utiliser avec les techniques d'interpolation générales. L'inconvénient réside principalement dans le fait que les informations sont sous-échantillonnées entre les isolignes, notamment dans les zones de bas relief.

Au début du processus d'interpolation, la fonction Topo vers raster s'appuie sur des informations inhérentes aux isolignes pour générer un modèle de drainage généralisé. En identifiant les zones de courbure maximale locale dans chaque isoligne, les zones de pentes les plus raides sont identifiées, et un réseau de cours d'eau et de crêtes est créé (Hutchinson, 1988). Ces informations sont utilisées pour garantir l'exactitude des propriétés hydrogéomorphiques du MNT en sortie et permettent également de vérifier l'exactitude du MNT en sortie.

Une fois la morphologie générale de la surface déterminée, les données d'isolignes sont également exploitées dans l'interpolation des valeurs d'altitude de chaque cellule.

Lorsque les données d'isolignes sont utilisées pour interpoler des informations d'altitude, elles sont toutes lues et généralisées. Cinquante points de données au maximum sont lus à partir de ces isolignes dans chaque cellule. A la résolution finale, seul un point critique est utilisé pour chaque cellule. Pour cette raison, il serait redondant d'avoir une densité d'isolignes avec plusieurs isolignes traversant les cellules en sortie.

Interpolation multi-résolution

Le programme repose sur une méthode d'interpolation multi-résolution, en commençant par un raster grossier, puis en appliquant une résolution plus élevée, définie par l'utilisateur. A chaque niveau de résolution, les conditions de drainage sont appliquées, l'interpolation est effectuée et le nombre de cuvettes restantes est enregistré dans le fichier de diagnostic en sortie.

Traitement des données de cours d'eau

L'outil Topo vers raster requiert que tous les arcs des données de réseau des cours d'eau soient dirigés vers le bas de la pente et qu'aucun polygone (lac) ou cours d'eau enchevêtré ne soit présent dans le réseau.

Les données de cours d'eau doivent se composer d'arcs uniques disposés selon un motif dendritique, et les cours d'eau enchevêtrés, les rives de cours d'eau parallèles, les lacs (polygones) etc. doivent être supprimés lors d'une mise à jour interactive. Lorsque vous modifiez des polygones de lac en dehors du réseau, un arc unique doit être placé du début à la fin de la zone de plan d'eau. L'arc doit suivre la trajectoire d'un lit de cours d'eau historique, s'il en existe un. Si l'altitude du lac est connue, son polygone et son altitude peuvent être utilisés comme entrée d'isoligne.

Pour afficher la direction des tronçons de ligne, redéfinissez la symbologie sur l'option de flèche à l'extrémité. Vous dessinez ainsi les tronçons de ligne avec une flèche indiquant les directions des lignes.

Création et mosaïquage de rasters adjacents

Il est parfois nécessaire de créer des MNT à partir de tuiles adjacentes de données en entrée. En principe, cela se passe lorsque les entités en entrée sont dérivées d'une série de cartes ou qu'en raison de limitations de mémoire, les données en entrée doivent être traitées en plusieurs parties.

Le processus d'interpolation utilise les données en entrée des zones avoisinantes pour définir la morphologie et le drainage de la surface et interpoler les valeurs en sortie. Toutefois, les valeurs de cellule sur les tronçons de tout MNT en sortie ne sont pas aussi fiables que dans la zone centrale, car ceux-ci sont interpolés avec la moitié moins d'informations.

Pour que les prévisions soient exactes sur les tronçons de la zone d'intérêt, l'étendue des jeux de données en entrée doit être supérieure à celle de la zone d'intérêt. Le paramètre Marge dans les cellules fournit une méthode de rognage des tronçons du MNT en sortie, basée sur une distance définie par l'utilisateur. Les tronçons des zones qui se chevauchent doivent être large d'au moins 20 cellules.

Une superposition des données en entrée devrait se produire dans les zones adjacentes lorsque plusieurs MNT en sortie sont combinés en un seul raster. Sans cette superposition, les tronçons des MNT combinés ne sont pas toujours lisses. Les étendues des jeux de données en entrée de chacune des interpolations doivent disposer d'une plus grande surface que si vous souhaitiez uniquement réaliser une interpolation pour une interpolation unique, afin de s'assurer que les tronçons pourront être devinés le plus précisément possible.

Une fois les MNT créés, ils seront combinés efficacement à l'aide de l'outil de géotraitement Mosaïque et des options de mélange ou de moyenne. Cette fonction propose des options de traitement des zones superposées pour améliorer la transition entre les jeux de données.

Evaluation de la sortie

Toute surface créée mérite d'être évaluée pour s'assurer que les données et les paramètres définis dans le programme génèrent une représentation réaliste de la surface. Plusieurs méthodes permettent d'évaluer la qualité d'une surface en sortie, en fonction du type d'entrée disponible pour créer la surface.

La plus courante consiste à créer des isolignes à partir de la nouvelle surface à l'aide de l'outil Isoligne et à les comparer aux données d'isolignes en entrée. Il est préférable de créer ces nouvelles isolignes à la moitié de l'intervalle d'isoligne d'origine pour vérifier les résultats entre les isolignes. En dessinant les isolignes d'origine par-dessus les nouvelles isolignes, vous aurez plus de facilité à identifier les erreurs d'interpolation.

Une autre méthode de comparaison visuelle consiste à comparer la couverture de drainage en sortie facultative à des cours d'eau et crêtes connus. La classe d'entités de drainage contient les cours d'eau et les crêtes qui ont été générés par le programme durant le processus d'application du drainage. Ces cours d'eau et crêtes doivent coïncider avec ceux qui sont connus dans la zone. Si une classe d'entités cours d'eau a été utilisée comme entrée, les cours d'eau en sortie doivent coïncider parfaitement avec ceux en entrée, même s'ils ont été légèrement plus généralisés.

Une méthode courante d'évaluation de la qualité d'une surface générée consiste à retirer un pourcentage des données en entrée du processus d'interpolation. Après avoir généré la surface, la hauteur de ces points connus peut être soustraite de la surface créée pour examiner le degré de similitude entre la nouvelle surface et la surface réelle. Les différences peuvent être utilisées pour calculer une mesure d'erreur pour la surface ; par exemple, l'erreur quadratique moyenne (EQM).

Le fichier de diagnostic facultatif peut être utilisé pour évaluer le degré d'efficacité des paramètres de tolérance à supprimer les cuvettes dans les données en entrée. La diminution des valeurs des tolérances peut faire en sorte que le programme soit moins agressif dans la suppression des cuvettes.

Représentation incorrecte des isolignes

L'algorithme d'interpolation commet des erreurs mineures qui font que les isolignes en entrée sont représentées en excès sur la surface en sortie. Ces erreurs peuvent engendrer un léger aplatissement de la surface en sortie à son intersection avec l'isoligne. Ces erreurs peuvent fausser les résultats lorsque vous calculez la courbure de profil de la surface en sortie, mais restent autrement négligeables.

Causes possibles des problèmes rencontrés avec l'outil Topo vers raster

Si vous rencontrez des problèmes lors de l'exécution de l'outil Topo vers raster, vérifiez les points suivants pour obtenir des explications et des solutions aux questions les plus courantes.

Bibliographie

Goodchild, M. F. et D. M. Mark. 1987. The fractal nature of geographic phenomena. Annals of Association of American Geographers. 77 (2): 265–278.

Hutchinson, M. F. 1988. Calculation of hydrologically sound digital elevation models. Essai présenté à la conférence Third International Symposium on Spatial Data Handling de Sydney, en Australie.

Hutchinson, M. F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, 106: 211–232.

Hutchinson, M. F. et T. I. Dowling. 1991. A continental hydrological assessment of a new grid-based digital elevation model of Australia. Hydrological Processes 5: 45–58.

Hutchinson, M. F. 1993. Development of a continent-wide DEM with applications to terrain and climate analysis. Environmental Modeling with GIS, ed. M. F. Goodchild et al., 392–399. New York: Oxford University Press.

Hutchinson, M. F. 1996. A locally adaptive approach to the interpolation of digital elevation models. Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling. Santa Barbara, CA: National Center for Geographic Information and Analysis. Voir : http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/hutchinson_michael_dem/local.html.

Wahba, G. 1990. Spline models for Observational data. Essai présenté lors d'une série de conférences régionales du CBMS-NSF sur les Mathématiques appliquées. Philadelphia: Soc. Ind. Appl. Maths.

Rubriques connexes


7/10/2012