FuzzyMSLarge
Resumen
Defines a fuzzy membership through a function based on the mean and standard deviation, with the larger values having a membership closer to 1.
Debate
The tool that uses the FuzzyMSLarge object: Fuzzy Membership.
There are two equations for the MS Large function, depending on the product of a * m.
- If x > a * m:
u(x) = 1 - (b * s) / (x - (a * m) + (b * s))
- where:
m = the mean
s = the standard deviation
a = a multiplier of the mean
b = a multiplier of the standard deviation
The a and b multipliers are input parameters.
- where:
- If x <= a * m:
u(x) = 0
The MSLarge function is useful when the large input values have a higher membership.
The input values can be either integer or floating point positive values.
The result can be similar to the Large fuzzy membership function, depending on how the multipliers of the mean and standard deviation are defined.
Sintaxis
Parámetro | Explicación | Tipo de datos |
meanMultiplier |
The multiplier for the mean of the input values in the MSLarge function equation. (El valor predeterminado es 1) | Double |
STDMultiplier |
The multiplier for the standard deviation of the input values in the MSLarge function equation. (El valor predeterminado es 1) | Double |
Propiedades
Propiedad | Explicación | Tipo de datos |
meanMultiplier (Lectura y escritura) |
The multiplier for the mean of the input values in the membership function equation. | Double |
STDMultiplier (Lectura y escritura) |
The multiplier for the standard deviation of the input values in the membership function equation. | Double |
Ejemplo de código
Demonstrates how to create a FuzzyMSLarge class and use it in the FuzzyMembership tool within the Python window.
import arcpy from arcpy.sa import * from arcpy import env env.workspace = "c:/sapyexamples/data" outFzyMember = FuzzyMembership("as_std", FuzzyMSLarge(1, 1.8)) outFzyMember.save("c:/sapyexamples/fzymslrg")
Performs a FuzzyMembership using the FuzzyMSLarge class.
# Name: FuzzyMSLarge_Ex_02.py # Description: Scales input raster data into values ranging from zero to one # indicating the strength of a membership in a set. # Requirements: Spatial Analyst Extension # Import system modules import arcpy from arcpy import env from arcpy.sa import * # Set environment settings env.workspace = "C:/sapyexamples/data" # Set local variables inRaster = "as_std" # Create the FuzzyMSLarge algorithm object meanMultiply = 1.5 stdMultiply = 2.2 myFuzzyAlgorithm = FuzzyMSLarge(meanMultiply, stdMultiply) # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") # Execute FuzzyMembership outFuzzyMember = FuzzyMembership(inRaster, myFuzzyAlgorithm) # Save the output outFuzzyMember.save("c:/sapyexamples/fzymslrg2")