

PREV CLASS NEXT CLASS  FRAMES NO FRAMES  
SUMMARY: NESTED  FIELD  CONSTR  METHOD  DETAIL: FIELD  CONSTR  METHOD 
java.lang.Object com.esri.arcgis.geometry.Line
public class Line
A 2D straight line between a pair of 2D endpoints; can optionally have height, measure and ID attributes at each endpoint.
Constructor Summary  

Line()
Constructs a Line using ArcGIS Engine. 

Line(Object obj)
Deprecated. As of ArcGIS 9.2, replaced by normal Java casts. Line theLine = (Line) obj; 
Method Summary  

void 
assign(IClone src)
Assigns the properties of src to the receiver. 
void 
constructAngleBisector(IPoint from,
IPoint through,
IPoint to,
double length,
boolean useAcuteAngle)
Constructs a line segment being the bisector through the angle defined by the three input points. 
void 
constructExtended(ILine inLine,
int extendHow)
Extends a line segment until one or both of its endpoints reaches the boundary of the domain of the line's associated spatial reference. 
void 
densify(int cInSlots,
double maxDeviation,
int[] pcOutSegments,
ILine[] segments)
Deprecated. This method uses C style arrays which are not supported in the ArcGIS API for Java. It is replaced by GeometryEnvironment.densify(com.esri.arcgis.geometry.ISegment, double, int[], com.esri.arcgis.geometry.ILine[][]) . 
boolean 
equals(Object o)
Compare this object with another 
IClone 
esri_clone()
Clones the receiver and assigns the result to *clone. 
void 
geographicShift(double splitLongitude)
Shift longitudes to the right of splitLongitude. 
void 
geoNormalize()
Shifts longitudes, if need be, into a continuous range of 360 degrees. 
void 
geoNormalizeFromLongitude(double longitude)
Normalizes longitudes into a continuous range containing the longitude. 
double 
getAngle()
The angle between this line and the positive xaxis. 
static String 
getClsid()
getClsid. 
int 
getDimension()
The topological dimension of this geometry. 
IEnvelope 
getEnvelope()
Creates a copy of this geometry's envelope and returns it. 
IPoint 
getFromPoint()
The 'from' point of the curve. 
int 
getGeometryType()
The type of this geometry. 
void 
getIDs(int[] fromID,
int[] toID)
Get the IDs on the segment's endpoints. 
double 
getLength()
The length of the curve. 
double 
getLength3D()
The length of the curve. 
void 
getMs(double[] fromM,
double[] toM)
Get the Ms on the segment's endpoints. 
ISpatialReference 
getSpatialReference()
The spatial reference associated with this geometry. 
void 
getSubcurve(double fromDistance,
double toDistance,
boolean asRatio,
ICurve[] outSubcurve)
Extracts a portion of this curve into a new curve. 
void 
getSubcurve3D(double fromDistance,
double toDistance,
boolean bAsRatio,
ICurve3D[] ppOutSubCurve)
Extracts a portion of this curve into a new curve. 
IPoint 
getToPoint()
The 'to' point of the curve. 
void 
getZs(double[] fromZ,
double[] toZ)
Get the Zs on the segment's endpoints. 
int 
hashCode()
the hashcode for this object 
void 
interfaceSupportsErrorInfo(GUID riid)
interfaceSupportsErrorInfo 
boolean 
isClosed()
Indicates if 'from' and 'to' points (of each part) are identical. 
boolean 
isClosed3D()
Indicates if 'from' and 'to' points (of each part) are identical. 
boolean 
isEmpty()
Indicates whether this geometry contains any points. 
boolean 
isEqual(IClone other)
Indicates if the receiver and other have the same properties. 
boolean 
isIdentical(IClone other)
Indicates if the receiver and other are the same object. 
void 
move(double dx,
double dy)
Moves dx units horizontally and dy units vertically. 
void 
moveVector(ILine v)
Moves a direction and distance v. 
void 
project(ISpatialReference newReferenceSystem)
Projects this geometry into a new spatial reference. 
void 
putCoords(IPoint from,
IPoint to)
Sets this line's endpoints to be 'from' and 'to'. 
void 
putCoordsEx(IPoint from,
IPoint to)
Sets this segment's endpoints to 'from' and 'to'. 
void 
putWKSCoords(_WKSPoint from,
_WKSPoint to)
From and To become the new endpoints of this line. 
void 
queryCoords(IPoint from,
IPoint to)
Copies the endpoints of this line to 'from' and 'to'. 
void 
queryCurvature(double distanceAlongCurve,
boolean asRatio,
double[] curvature,
ILine unitVector)
Finds curvature and unit vector starting at point on segment and directed to embedded circle center. 
void 
queryEnvelope(IEnvelope outEnvelope)
Copies this geometry's envelope properties into the specified envelope. 
void 
queryFromPoint(IPoint from)
Copies this curve's 'from' point to the input point. 
void 
queryNearestPoint(IPoint p,
int extension,
IPoint nearest)
Copies into 'nearest' a point on this geometry nearest to the input point. 
void 
queryNearestPoint3D(IPoint pInP,
int extension,
IPoint pNearest)
Copies into 'nearest' a point on this geometry nearest to the input point. 
void 
queryNormal(int extension,
double distanceAlongCurve,
boolean asRatio,
double length,
ILine normal)
Constructs a line normal to a curve from a point at a specified distance along the curve. 
void 
queryPoint(int extension,
double distanceAlongCurve,
boolean asRatio,
IPoint outPoint)
Copies to outPoint the properties of a point on the curve at a specified distance from the beginning of the curve. 
void 
queryPoint3D(int extension,
double distanceAlongCurve,
boolean bAsRatio,
IPoint pOutPoint)
Copies to outPoint the properties of a point on the curve at a specified distance from the beginning of the curve. 
void 
queryPointAndDistance(int extension,
IPoint inPoint,
boolean asRatio,
IPoint outPoint,
double[] distanceAlongCurve,
double[] distanceFromCurve,
boolean[] bRightSide)
Finds the point on the curve closest to inPoint, then copies that point to outPoint; optionally calculates related items. 
void 
queryPointAndDistance3D(int extension,
IPoint pInPoint,
boolean bAsRatio,
IPoint pOutPoint,
double[] pDistanceAlongCurve,
double[] pDistanceFromCurve)
Finds the point on the curve closest to inPoint, then copies that point to outPoint; optionally calculates related items. 
void 
queryPointsAndDistances(int extension,
double searchRadius,
IPoint inPoint,
boolean asRatio,
double[] distanceFromCurve,
IEnumPointAndDistance[] pointsAndDistances)
Given an input point, calculates the minimum distance to the geometry and provides an enumerator over all closest points on the geometry, along with additional information. 
void 
queryTangent(int extension,
double distanceAlongCurve,
boolean asRatio,
double length,
ILine tangent)
Constructs a line tangent to a curve from a point at a specified distance along the curve. 
void 
queryToPoint(IPoint to)
Copies the curve's 'to' point into the input point. 
void 
queryWKSCoords(_WKSPoint[] from,
_WKSPoint[] to)
Returns the (x,y) coordinates of this line's endpoints. 
double 
returnDistance(IGeometry other)
Returns the minimum distance between two geometries. 
double 
returnDistance3D(IGeometry pOther)
Returns the minimal distance between two geometries. 
IPoint 
returnNearestPoint(IPoint p,
int extension)
Creates and returns a point on this geometry nearest to the input point. 
IPoint 
returnNearestPoint3D(IPoint pInP,
int extension)
Creates and returns a point on this geometry nearest to the input point. 
int 
returnTurnDirection(ISegment otherSegment)
Finds turn direction between two connected segments. 
void 
reverseOrientation()
Reverses the parameterization of the curve ('from' point becomes 'to' point, first segment becomes last segment, etc). 
void 
rotate(IPoint origin,
double rotationAngle)
Rotates about the specified origin point. 
void 
scale(IPoint origin,
double sx,
double sy)
Scales about the specified origin using seperate horizonal and vertical scales. 
void 
setEmpty()
Removes all points from this geometry. 
void 
setFromPoint(IPoint from)
The 'from' point of the curve. 
void 
setIDs(int fromID,
int toID)
Set the IDs on the segment's endpoints. 
void 
setMs(double fromM,
double toM)
Set the Ms on the segment's endpoints. 
void 
setSpatialReferenceByRef(ISpatialReference spatialRef)
The spatial reference associated with this geometry. 
void 
setToPoint(IPoint to)
The 'to' point of the curve. 
void 
setZs(double fromZ,
double toZ)
Set the Zs on the segment's endpoints. 
void 
snapToSpatialReference()
Moves points of this geometry so that they can be represented in the precision of the geometry's associated spatial reference system. 
void 
splitAtDistance(double distances,
boolean asRatio,
ISegment[] fromSegment,
ISegment[] toSegment)
Split segment at specified distance. 
void 
splitDivideLength(double offset,
double length,
boolean asRatio,
int[] numSplitSegments,
ISegment splitSegments)
Deprecated. This method uses C style arrays which are not supported in the ArcGIS API for Java. It is replaced by GeometryEnvironment.splitDivideLength(com.esri.arcgis.geometry.ISegment, double, double, boolean, int[], com.esri.arcgis.geometry.ISegment[][]) . 
void 
transform(int direction,
ITransformation transformation)
Applies an arbitrary transformation. 
Methods inherited from class java.lang.Object 

clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait 
Methods inherited from interface com.esri.arcgis.interop.RemoteObjRef 

getJintegraDispatch, release 
Constructor Detail 

public Line() throws IOException, UnknownHostException
IOException
 if there are interop problems
UnknownHostException
 if there are interop problemspublic Line(Object obj) throws IOException
Line theLine = (Line) obj;
obj
to Line
.
obj
 an object returned from ArcGIS Engine or Server
IOException
 if there are interop problemsMethod Detail 

public static String getClsid()
public boolean equals(Object o)
equals
in class Object
public int hashCode()
hashCode
in class Object
public void putCoords(IPoint from, IPoint to) throws IOException, AutomationException
The PutCoords method sets the From Point and To Point for a line object. If the From Point and To Point are identical, it creates a zero Length line with the same start and endpoint.
putCoords
in interface ILine
from
 A reference to a com.esri.arcgis.geometry.IPoint (in)to
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryCoords(IPoint from, IPoint to) throws IOException, AutomationException
Queries the From and To Points of the Line. These are the only parameters necessary to create a welldefined line.
queryCoords
in interface ILine
from
 A reference to a com.esri.arcgis.geometry.IPoint (in)to
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public double getAngle() throws IOException, AutomationException
The following Visual Basic example gets the angle of a line and converts it to degrees :
dAngleDegree = (180 * pLine.Angle) / Pi
Where Pi = 4 * Atn(1)
getAngle
in interface ILine
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public double getLength() throws IOException, AutomationException
Returns the length of the entire curve. The length of the curve is the sum of the lengths along each parameterized Segment between vertices along the curve.
getLength
in interface ICurve
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IPoint getFromPoint() throws IOException, AutomationException
Returns or Sets the FromPoint of the first segment of the first part of the curve. While the curve may be composed of many parts and segments each with their own FromPoint, each curve only has a single From Point.
getFromPoint
in interface ICurve
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IPoint
,
ICurve.queryFromPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getFromPoint()
,
ICurve.queryToPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getToPoint()
public void setFromPoint(IPoint from) throws IOException, AutomationException
setFromPoint
in interface ICurve
from
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryFromPoint(IPoint from) throws IOException, AutomationException
Used to query the FromPoint of the first Segment of the first part of the curve.
Note: The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
queryFromPoint
in interface ICurve
from
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IPoint
,
ICurve.queryFromPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getFromPoint()
,
ICurve.queryToPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getToPoint()
public IPoint getToPoint() throws IOException, AutomationException
Returns or Sets the ToPoint of the first Segment of the first part of the curve. While the curve may be composed of many parts and segments each with their own ToPoint, each curve only has a single To Point.
getToPoint
in interface ICurve
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IPoint
,
ICurve.queryFromPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getFromPoint()
,
ICurve.queryToPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getToPoint()
public void setToPoint(IPoint to) throws IOException, AutomationException
setToPoint
in interface ICurve
to
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryToPoint(IPoint to) throws IOException, AutomationException
Used to query the ToPoint of the first Segment of the first part of the curve.
Note: The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
queryToPoint
in interface ICurve
to
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IPoint
,
ICurve.queryFromPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getFromPoint()
,
ICurve.queryToPoint(com.esri.arcgis.geometry.IPoint)
,
ICurve.getToPoint()
public void queryPoint(int extension, double distanceAlongCurve, boolean asRatio, IPoint outPoint) throws IOException, AutomationException
Returns the Point at a given distance along the curve or extended curve. If the distance is less than the length of the curve, then the returned point is the point at that distance along the curve. If the distance is less than zero, or greater than the length of the curve, then the returned point is on the curve specified by the extension method. The distance may be specified as a fixed unit of measure or a ratio of the length of the curve.
Note: The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
queryPoint
in interface ICurve
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)distanceAlongCurve
 The distanceAlongCurve (in)asRatio
 The asRatio (in)outPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IPoint
,
esriSegmentExtension
public void queryPointAndDistance(int extension, IPoint inPoint, boolean asRatio, IPoint outPoint, double[] distanceAlongCurve, double[] distanceFromCurve, boolean[] bRightSide) throws IOException, AutomationException
Finds the Point on the specified extended curve nearest to the input point and the distance between those points. Also returns information about the side of the curve the input point is on as well as the distance along the curve that the nearest point occurs.
AsRatio is an input parameter that only affects the DistanceAlongCurve
distanceFromCurve is an output parameter that represents the minimum distance between the curve and the input point.
DistanceAlongCurve is an output parameter that represents the distance between the Frompoint of the input curve and the returned point on the curve.
bRightSide is an output parameter that tells if the output point is on the right side of the curve. The direction of the curve determines the right and left sides.
Note: The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
queryPointAndDistance
in interface ICurve
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)inPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)asRatio
 The asRatio (in)outPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)distanceAlongCurve
 The distanceAlongCurve (in/out: use single element array)distanceFromCurve
 The distanceFromCurve (in/out: use single element array)bRightSide
 The bRightSide (in/out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IPoint
public void queryTangent(int extension, double distanceAlongCurve, boolean asRatio, double length, ILine tangent) throws IOException, AutomationException
Given a distance along the curve specified either as a ratio of the length or as a specific fixed distance, QueryTangent returns the Line tangent to the Point. The length and method of tangential extension of the tangent line are given by the user. The method of tangential extension determines the direction of the tangent line as though it were being extended at a From point or a To point.
queryTangent
in interface ICurve
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)distanceAlongCurve
 The distanceAlongCurve (in)asRatio
 The asRatio (in)length
 The length (in)tangent
 A reference to a com.esri.arcgis.geometry.ILine (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.ILine
public void queryNormal(int extension, double distanceAlongCurve, boolean asRatio, double length, ILine normal) throws IOException, AutomationException
Given a distance along the curve specified either as a ratio of the Length or as a specific fixed distance, QueryNormal returns the Line normal to the Point. The length and method of tangential extension of the normal line are given by the user. The method of tangential extension determines the direction of the normal line as though it were being extended at a From point or a To point.
queryNormal
in interface ICurve
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)distanceAlongCurve
 The distanceAlongCurve (in)asRatio
 The asRatio (in)length
 The length (in)normal
 A reference to a com.esri.arcgis.geometry.ILine (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.ILine
public void getSubcurve(double fromDistance, double toDistance, boolean asRatio, ICurve[] outSubcurve) throws IOException, AutomationException
Gets the subcurve between the specified points along the original curve and creates a new curve. The elements in the new subcurve are the same type and have the same properties as the elements of the original curve. Which means if:
Input Geometry  Output Geometry 

Polygon  Polyline 
Polyline  Polyline 
Ring  Path 
Path  Path 
Segment  Segment 
If the input geometry is a polygon, you may want to use IRing::GetSubCurveEx which has more capabilities.
getSubcurve
in interface ICurve
fromDistance
 The fromDistance (in)toDistance
 The toDistance (in)asRatio
 The asRatio (in)outSubcurve
 A reference to a com.esri.arcgis.geometry.ICurve (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IRing.getSubcurveEx(double, double, boolean, boolean, boolean)
,
ICurve.getSubcurve(double, double, boolean, com.esri.arcgis.geometry.ICurve[])
public void reverseOrientation() throws IOException, AutomationException
ReverseOrientation changes the direction of the curve without changing the spatial position of the curve. The From Point and To Point of each Segment in each part of the curve are interchanged.
The ReverseOrientation method works the same way as the Arcedit FLIP command. It reverses the order of the vertices in the Curve.
Caution should be taken in using ReverseOrientation on Polygons. Since ReverseOrientation changes the direction of each Ring within the Polygon, all Exterior Rings become Interior Rings and vice versa.
reverseOrientation
in interface ICurve
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isClosed() throws IOException, AutomationException
A curve is closed if the From and To points of each part of the curve are equal.
IsClosed may still return TRUE if the curve consists of improperly constructed geometries (ex. noncontinuous paths). IsClosed only checks the location of the From and To points of each part, it does not check the internal parts for topological consistency.
isClosed
in interface ICurve
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public int getGeometryType() throws IOException, AutomationException
esriGeometryNull = 0
esriGeometryPoint = 1
esriGeometryMultipoint = 2
esriGeometryPolyline = 3
esriGeometryPolygon = 4
esriGeometryEnvelope = 5
esriGeometryPath = 6
esriGeometryAny = 7
esriGeometryMultiPatch = 9
esriGeometryRing = 11
esriGeometryLine = 13
esriGeometryCircularArc = 14
esriGeometryBezier3Curve = 15
esriGeometryEllipticArc = 16
esriGeometryBag = 17
esriGeometryTriangleStrip = 18
esriGeometryTriangleFan = 19
esriGeometryRay = 20
esriGeometrySphere = 21
getGeometryType
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public int getDimension() throws IOException, AutomationException
Returns the dimension of the geometry object based on the geometry's type.
getDimension
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public ISpatialReference getSpatialReference() throws IOException, AutomationException
Returns and sets the Spatial Reference in which the geometry exists. If the spatial reference has not been set the property will return an empty ISpatialReference instance.
getSpatialReference
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setSpatialReferenceByRef(ISpatialReference spatialRef) throws IOException, AutomationException
setSpatialReferenceByRef
in interface IGeometry
spatialRef
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isEmpty() throws IOException, AutomationException
IsEmpty returns TRUE when the Geometry object does not contain geometric information beyond its original initialization state. An object may be returned to its original initialization (IsEmpty = TRUE) state using SetEmpty.
isEmpty
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setEmpty() throws IOException, AutomationException
SetEmpty returns the Geometry to its original initialization state by releasing all data referenced by the Geometry.
setEmpty
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryEnvelope(IEnvelope outEnvelope) throws IOException, AutomationException
Returns the unique Envelope that binds the Geometry object. This is the smallest Envelope that Contains the object.
Note: The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
queryEnvelope
in interface IGeometry
outEnvelope
 A reference to a com.esri.arcgis.geometry.IEnvelope (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IEnvelope getEnvelope() throws IOException, AutomationException
Returns the unique Envelope that binds the Geometry object. This is the smallest Envelope that Contains the object.
getEnvelope
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void project(ISpatialReference newReferenceSystem) throws IOException, AutomationException
To Project, the geometry needs to have a Spatial Reference set, and not have an UnknownCoordinateSystem. The new spatial reference system passed to the method defines the output coordinate system. If either spatial reference is Unknown, the coordinates are not changed. The Z and measure values are not changed by the Project method.
A geometry is not densified before it is projected. This can lead to the output geometries not reflecting the 'true' shape in the new coordinate system. A straight line in one coordinate system is not necessarily a straight line in a different coordinate system. Use IGeometry2::ProjectEx if you want to densify the geometries while they are projected.
The Project method must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometry types.
If a geometry is projected to a projected coordinate system that can't represent the geographic area where the geometry is located (or if trying to move an xy coordinate from outside the projected coordinate system back into geographic), the geometry will be set to empty.
Note: This method can only be called upon the top level geometries (Points, Multipoints, Polylines and Polygons). If the from/to spatial references have different geographic coordinate systems, the Project method looks for a GeoTransformationsOperationSet. If the set of Geotransformations is present in memory, Project will use it to perform a geographic/datum Transformation. To use a specific geotransformation, use the IGeometry2::ProjectEx method.
project
in interface IGeometry
newReferenceSystem
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void snapToSpatialReference() throws IOException, AutomationException
snapToSpatialReference
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void geoNormalize() throws IOException, AutomationException
geoNormalize
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void geoNormalizeFromLongitude(double longitude) throws IOException, AutomationException
geoNormalizeFromLongitude
in interface IGeometry
longitude
 The longitude (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void putWKSCoords(_WKSPoint from, _WKSPoint to) throws IOException, AutomationException
The from and to parameters are WKSPoint structures instead of Point objects. If you are not interested in using or preserving vertex attributes then PutWKSCoords and QueryWKSCoords can be a quicker way to modify and obtain the xy coordinates defining the line.
putWKSCoords
in interface ILine2
from
 A Structure: com.esri.arcgis.system._WKSPoint (A com.esri.arcgis.system._WKSPoint COM typedef) (in)to
 A Structure: com.esri.arcgis.system._WKSPoint (A com.esri.arcgis.system._WKSPoint COM typedef) (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryWKSCoords(_WKSPoint[] from, _WKSPoint[] to) throws IOException, AutomationException
The from and to parameters are WKSPoint structures instead of Point objects. If you are not interested in using or preserving vertex attributes then PutWKSCoords and QueryWKSCoords can be a quicker way to modify and obtain the xy coordinates defining the line.
queryWKSCoords
in interface ILine2
from
 A Structure: com.esri.arcgis.system._WKSPoint (A com.esri.arcgis.system._WKSPoint COM typedef) (out: use single element array)to
 A Structure: com.esri.arcgis.system._WKSPoint (A com.esri.arcgis.system._WKSPoint COM typedef) (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void move(double dx, double dy) throws IOException, AutomationException
Moves the Geometry dX units along the XAxis and dY units along the YAxis. Only changes the position of the Geometry without altering any of the other characteristics. Move is a spatial offset.
move
in interface ITransform2D
dx
 The dx (in)dy
 The dy (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void moveVector(ILine v) throws IOException, AutomationException
Moves the Geometry dX units along the XAxis and dY units along the YAxis, where dX and dY are calculated from the input vector Line. Only the Length and Angle of the vector affect the transformation. The location of the vector does not change the transformation. Only changes the position of the Geometry without altering any of the other characteristics. Move is a spatial offset.
moveVector
in interface ITransform2D
v
 A reference to a com.esri.arcgis.geometry.ILine (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void scale(IPoint origin, double sx, double sy) throws IOException, AutomationException
Stretches the Geometry a factor of sX along the XAxis and a factor of sY along the YAxis (where sX is the ratio of Old Width to New Width, and sY is the ratio of Old Height to New Height). The Origin point is the reference Point from which the transformation is performed (Regardless of the location of the Origin point, the Geometry resulting from the transformation is the same, except for a positional offset). The Origin is the only point in the transformation guaranted to remain in the same location after the transformation is complete.
Note: Caution must be taken when scaling a CircularArc or a geometry containing CircularArc segments. Unless Abs(ScaleX) = Abs(ScaleY), the resulting CircularArcs will not retain the characteristics of the original geometry (since they remain CircularArcs).
scale
in interface ITransform2D
origin
 A reference to a com.esri.arcgis.geometry.IPoint (in)sx
 The sx (in)sy
 The sy (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void rotate(IPoint origin, double rotationAngle) throws IOException, AutomationException
Rotate performs an angular transform (rotation) on the Geometry. The Origin is the only point in the transformation guaranteed to remain in the same location after the transformation is performed. Regardless of the Origin, the transformed Geometry is the same, except for a positional offset. The RotationAngle is measured in radians.
An Envelope cannot be Rotated.
rotate
in interface ITransform2D
origin
 A reference to a com.esri.arcgis.geometry.IPoint (in)rotationAngle
 The rotationAngle (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void transform(int direction, ITransformation transformation) throws IOException, AutomationException
transform
in interface ITransform2D
direction
 A com.esri.arcgis.geometry.esriTransformDirection constant (in)transformation
 A reference to a com.esri.arcgis.geometry.ITransformation (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void putCoordsEx(IPoint from, IPoint to) throws IOException, AutomationException
PutCoordsEx allows both the fromPoint and the toPoint to be set simultaneously.
A Conformal Transformation based on the original points and the new points
is applied to the curve.
putCoordsEx
in interface ICurve2
from
 A reference to a com.esri.arcgis.geometry.IPoint (in)to
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryPointsAndDistances(int extension, double searchRadius, IPoint inPoint, boolean asRatio, double[] distanceFromCurve, IEnumPointAndDistance[] pointsAndDistances) throws IOException, AutomationException
This method is similar to QueryPointsAndDistance; but it handles the case where the location of the minimum distance is not unique (See picture below). QueryPointAndDistance returns only the first location, this method returns all locations of minimum distance.
AsRatio is an input parameter that only affects the DistanceAlongCurvereturned as part of the output IEnumPointAndDistance enumerator.
distanceFromCurve is an output parameter that represents the minimum distance between the curve and the input point.
IEnumPointAndDistance is an enumerator (it inherits from IEnumVertex) over all nearest points on the curve
queryPointsAndDistances
in interface ICurve3
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)searchRadius
 The searchRadius (in)inPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)asRatio
 The asRatio (in)distanceFromCurve
 The distanceFromCurve (in/out: use single element array)pointsAndDistances
 A reference to a com.esri.arcgis.geometry.IEnumPointAndDistance (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryCurvature(double distanceAlongCurve, boolean asRatio, double[] curvature, ILine unitVector) throws IOException, AutomationException
Returns the curvature at a specified distance along the segment. The distance can be given explicitly or as a ratio of the entire length of the segment. The curvature is returned as a Line representing a directional unit vector (in the direction going from the From Point to the To Point) and a double representing the magnitude of the vector of curvature.
The unit vector returned by QueryCurvature points toward the center of the circle that has the same first and second derivative at the queried point with a curvature value equal to 1 / Radius of that circle.
queryCurvature
in interface ISegment
distanceAlongCurve
 The distanceAlongCurve (in)asRatio
 The asRatio (in)curvature
 The curvature (out: use single element array)unitVector
 A reference to a com.esri.arcgis.geometry.ILine (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public int returnTurnDirection(ISegment otherSegment) throws IOException, AutomationException
Returns the Turn Direction of the Segment immediately following the current Segment. The two segments must be connected between the To Point of the first segment and the From Point of the second segment. ReturnTurnDirection returns a long corresponding to an esriTurnDirectionEnum or a combination of esriNoTurn or esriUTurn and esriRightTurn or esriLeftTurn. If the two segments are tangential at the point of connection and not completely colinear, then a combination of esriTurnDirectionEnums are returned.
ReturnTurnDirection is only available for Lines and CircularArcs, not BezierCurves or EllipticArcs.
returnTurnDirection
in interface ISegment
otherSegment
 A reference to a com.esri.arcgis.geometry.ISegment (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void splitAtDistance(double distances, boolean asRatio, ISegment[] fromSegment, ISegment[] toSegment) throws IOException, AutomationException
Splits the input Segment at the given distance and returns the Segment between the original From Point and the split point as well as the Segment between the split point and the original To Point. The split distance may be specified as a ratio of the total distance if AsRatio = TRUE, otherwise the distance is in the same units as the Length of the Segment.
splitAtDistance
in interface ISegment
distances
 The distances (in)asRatio
 The asRatio (in)fromSegment
 A reference to a com.esri.arcgis.geometry.ISegment (out: use single element array)toSegment
 A reference to a com.esri.arcgis.geometry.ISegment (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void splitDivideLength(double offset, double length, boolean asRatio, int[] numSplitSegments, ISegment splitSegments) throws IOException, AutomationException
GeometryEnvironment.splitDivideLength(com.esri.arcgis.geometry.ISegment, double, double, boolean, int[], com.esri.arcgis.geometry.ISegment[][])
.
Outputs an array of Segments of a desired input length starting at an offset distance along the curve and continuing until the end of the Segment is reached. The offset and length may be specified as a ratio of the total length of the Segment. SplitDivideLength outputs an array of Segments and the number of Segments in that array. All of the output Segments in the array have the desired input length with the exception of the final Segment which has a length less than or equal to the input length (the remainder of the Segment).
splitDivideLength
in interface ISegment
offset
 The offset (in)length
 The length (in)asRatio
 The asRatio (in)numSplitSegments
 The numSplitSegments (in)splitSegments
 A reference to a com.esri.arcgis.geometry.ISegment (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void densify(int cInSlots, double maxDeviation, int[] pcOutSegments, ILine[] segments) throws IOException, AutomationException
GeometryEnvironment.densify(com.esri.arcgis.geometry.ISegment, double, int[], com.esri.arcgis.geometry.ILine[][])
.
Densifying individual segments can be accomplished in client code by add the segment to a temporary polyline, then densifying the polyline using one of the methods on IPolycurve. Alternatively, the IGeometryBridge interface on the GeometryEnvironment object can be used.
densify
in interface ISegment
cInSlots
 The cInSlots (in)maxDeviation
 The maxDeviation (in)pcOutSegments
 The pcOutSegments (out: use single element array)segments
 A reference to a com.esri.arcgis.geometry.ILine (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void geographicShift(double splitLongitude) throws IOException, AutomationException
geographicShift
in interface ISegment
splitLongitude
 The splitLongitude (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void constructAngleBisector(IPoint from, IPoint through, IPoint to, double length, boolean useAcuteAngle) throws IOException, AutomationException
Constructs a Line segment of given input Length which bisects the Angle formed by the right side of the three input points. The From Point of the new Line is the Through input point. If the right side angle is smaller, the constructed Line will always bisect this angle, regardless of the value of bUseSmallerAngle. However, if the right side angle is larger, and bUseSmallerAngle is TRUE, then the constructed line will bisect the smaller angle (left side) instead of the right side reflex angle.
constructAngleBisector
in interface IConstructLine
from
 A reference to a com.esri.arcgis.geometry.IPoint (in)through
 A reference to a com.esri.arcgis.geometry.IPoint (in)to
 A reference to a com.esri.arcgis.geometry.IPoint (in)length
 The length (in)useAcuteAngle
 The useAcuteAngle (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void constructExtended(ILine inLine, int extendHow) throws IOException, AutomationException
Extends a line to the maximum extent of the Spatial Reference given a desired extension method.
To extend a Line to another Curve, wrap the Line in a Polyline and use IConstructCurve::ConstructExtended.
constructExtended
in interface IConstructLine
inLine
 A reference to a com.esri.arcgis.geometry.ILine (in)extendHow
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryNearestPoint(IPoint p, int extension, IPoint nearest) throws IOException, AutomationException
Queries the nearest point on a geometry to the input point. Depending on the method of segment extension, the nearest point can also be found on an extension of the geometry.
queryNearestPoint
in interface IProximityOperator
p
 A reference to a com.esri.arcgis.geometry.IPoint (in)extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)nearest
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.esriSegmentExtension
,
IProximityOperator.returnNearestPoint(com.esri.arcgis.geometry.IPoint, int)
public IPoint returnNearestPoint(IPoint p, int extension) throws IOException, AutomationException
Finds and returns the nearest point on a geometry to the input point. Depending on the method of segment extension, the nearest point can also be found on an extension of the geometry.
returnNearestPoint
in interface IProximityOperator
p
 A reference to a com.esri.arcgis.geometry.IPoint (in)extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.esriSegmentExtension
,
IProximityOperator.queryNearestPoint(com.esri.arcgis.geometry.IPoint, int, com.esri.arcgis.geometry.IPoint)
public double returnDistance(IGeometry other) throws IOException, AutomationException
Returns the minimum distance between two geometries. If the geometries intersect, the minimum distance is 0. Only returns the distance, and not the nearest points.
The geometry combinations which can be used with ReturnDistance are:
Point: Point, MultiPoint, Envelope, Polyline, Polygon, Line, CircularArc, EllipticArc, BezierCurve.
Multipoint: Point, MultiPoint, Envelope, Polyline, Polygon.
Envelope: Point, MultiPoint, Envelope, Line, CircularArc, EllipticArc, BezierCurve, PolyLine, Polygon.
PolyLine: Point, Multipoint, Envelope, PolyLine, Polygon.
Polygon: Point, Multipoint, Envelope, PolyLine, Polygon.
Line: Point, Envelope, Line, CircularArc, EllipticArc, BezierCurve.
CircularArc: Point, Envelope, Line, CircularArc, EllipticArc (not implemented yet), BezierCurve.
EllipticArc: Point, Envelope, Line, CircularArc (not implemented yet), EllipticArc (not implemented yet), BezierCurve (not implemented yet).
BezierCurve: Point, Envelope, Line, CircularArc, EllipticArc (not implemented yet), BezierCurve.
Note: To get the distance between a segment (Line, CircularArc, EllipticArc, BezierCurve) and a MultiPoint, PolyLine or Polygon, add that segment to a PolyLine.
returnDistance
in interface IProximityOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void interfaceSupportsErrorInfo(GUID riid) throws IOException, AutomationException
Indicates whether the interface supports IErrorInfo.
interfaceSupportsErrorInfo
in interface ISupportErrorInfo
riid
 A Structure: com.esri.arcgis.support.ms.stdole.GUID (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IClone esri_clone() throws IOException, AutomationException
esri_clone
in interface IClone
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void assign(IClone src) throws IOException, AutomationException
assign
in interface IClone
src
 A reference to a com.esri.arcgis.system.IClone (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isEqual(IClone other) throws IOException, AutomationException
IsEqual returns True if the receiver and the source have the same properties. Note, this does not imply that the receiver and the source reference the same object.
isEqual
in interface IClone
other
 A reference to a com.esri.arcgis.system.IClone (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isIdentical(IClone other) throws IOException, AutomationException
IsIdentical returns true if the receiver and the source reference the same object.
isIdentical
in interface IClone
other
 A reference to a com.esri.arcgis.system.IClone (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void getMs(double[] fromM, double[] toM) throws IOException, AutomationException
Returns the M attributes held by the From and To point of the segment.
getMs
in interface ISegmentM
fromM
 The fromM (out: use single element array)toM
 The toM (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setMs(double fromM, double toM) throws IOException, AutomationException
Sets the M attributes for the From and To points of the segment. These attributes can be set regardless of the attribute awareness of the segment.
setMs
in interface ISegmentM
fromM
 The fromM (in)toM
 The toM (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void getZs(double[] fromZ, double[] toZ) throws IOException, AutomationException
Returns the Z attributes held by the From and To point of the segment.
getZs
in interface ISegmentZ
fromZ
 The fromZ (out: use single element array)toZ
 The toZ (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setZs(double fromZ, double toZ) throws IOException, AutomationException
Sets the Z attributes for the From and To points of the segment. These attributes can be set regardless of the attribute awareness of the segment.
setZs
in interface ISegmentZ
fromZ
 The fromZ (in)toZ
 The toZ (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void getIDs(int[] fromID, int[] toID) throws IOException, AutomationException
Returns the PointID attributes held by the From and To point of the segment.
getIDs
in interface ISegmentID
fromID
 The fromID (out: use single element array)toID
 The toID (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setIDs(int fromID, int toID) throws IOException, AutomationException
Sets the PointID attributes for the From and To points of the segment. These attributes can be set regardless of the attribute awareness of the segment.
setIDs
in interface ISegmentID
fromID
 The fromID (in)toID
 The toID (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public double getLength3D() throws IOException, AutomationException
Returns the 3D length of the entire curve. The length of
the curve is the sum of the lengths along each parameterized
Segment between vertices along the curve.
getLength3D
in interface ICurve3D
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryPoint3D(int extension, double distanceAlongCurve, boolean bAsRatio, IPoint pOutPoint) throws IOException, AutomationException
Returns the Point at a given 3D distance along the curve or
extended curve. If the distance is less than the length of
the curve, then the returned point is the point at that distance
along the curve. If the distance is less than zero, or
greater than the length of the curve, then the returned point is on
the curve specified by the extension method. The distance may
be specified as a fixed unit of measure or a ratio of the 3D length
of the curve.
queryPoint3D
in interface ICurve3D
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)distanceAlongCurve
 The distanceAlongCurve (in)bAsRatio
 The bAsRatio (in)pOutPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void getSubcurve3D(double fromDistance, double toDistance, boolean bAsRatio, ICurve3D[] ppOutSubCurve) throws IOException, AutomationException
Gets the subcurve between the specified points along the
original curve and creates a new curve. The elements in the new
subcurve are the same type and have the same properties as the
elements of the original curve.
getSubcurve3D
in interface ICurve3D
fromDistance
 The fromDistance (in)toDistance
 The toDistance (in)bAsRatio
 The bAsRatio (in)ppOutSubCurve
 A reference to a com.esri.arcgis.geometry.ICurve3D (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryPointAndDistance3D(int extension, IPoint pInPoint, boolean bAsRatio, IPoint pOutPoint, double[] pDistanceAlongCurve, double[] pDistanceFromCurve) throws IOException, AutomationException
Finds the Point on the specified extended curve nearest to the
input point and the distance between those points. Also
returns information about the side of the curve the input point is
on as well as the distance along the curve that the nearest point
occurs. The operation is performed in 3D space.
queryPointAndDistance3D
in interface ICurve3D
extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)pInPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)bAsRatio
 The bAsRatio (in)pOutPoint
 A reference to a com.esri.arcgis.geometry.IPoint (in)pDistanceAlongCurve
 The pDistanceAlongCurve (in/out: use single element array)pDistanceFromCurve
 The pDistanceFromCurve (in/out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isClosed3D() throws IOException, AutomationException
isClosed3D
in interface ICurve3D
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryNearestPoint3D(IPoint pInP, int extension, IPoint pNearest) throws IOException, AutomationException
Queries the nearest point on a z aware geometry to the input
point in 3D space. Depending on the method of segment
extension, the nearest point can also be found on an extension of
the geometry.
If the geometry is an Envelope and the input point is located within the bounds of the Envelope, QueryNearestPoint3D will return a point on the exterior of the Envelope nearest the input point.
queryNearestPoint3D
in interface IProximityOperator3D
pInP
 A reference to a com.esri.arcgis.geometry.IPoint (in)extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)pNearest
 A reference to a com.esri.arcgis.geometry.IPoint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IPoint returnNearestPoint3D(IPoint pInP, int extension) throws IOException, AutomationException
Finds and returns the nearest point, in 3D space, on a z aware
geometry to the input point. Depending on the method of
segment extension, the nearest point can also be found on an
extension of the geometry.
If the geometry is an Envelope and the input point is located within the bounds of the Envelope, QueryNearestPoint3D will return a point on the exterior of the Envelope nearest the input point.
returnNearestPoint3D
in interface IProximityOperator3D
pInP
 A reference to a com.esri.arcgis.geometry.IPoint (in)extension
 A com.esri.arcgis.geometry.esriSegmentExtension constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public double returnDistance3D(IGeometry pOther) throws IOException, AutomationException
Returns the minimum distance between two z aware geometries in
3D space. If the geometries intersect, the minimum distance
is 0. Only returns the distance, and not the nearest
points.
returnDistance3D
in interface IProximityOperator3D
pOther
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.


PREV CLASS NEXT CLASS  FRAMES NO FRAMES  
SUMMARY: NESTED  FIELD  CONSTR  METHOD  DETAIL: FIELD  CONSTR  METHOD 