

PREV CLASS NEXT CLASS  FRAMES NO FRAMES  
SUMMARY: NESTED  FIELD  CONSTR  METHOD  DETAIL: FIELD  CONSTR  METHOD 
java.lang.Object com.esri.arcgis.geometry.GeometryBag
public class GeometryBag
An ordered collection of objects that support the IGeometry interface.
Constructor Summary  

GeometryBag()
Constructs a GeometryBag using ArcGIS Engine. 

GeometryBag(Object obj)
Deprecated. As of ArcGIS 9.2, replaced by normal Java casts. GeometryBag theGeometryBag = (GeometryBag) obj; 
Method Summary  

void 
addGeometries(int count,
IGeometry newGeometries)
Deprecated. This method uses C style arrays which are not supported in the ArcGIS API for Java. It is replaced by GeometryEnvironment.addGeometries(com.esri.arcgis.geometry.IGeometryCollection, com.esri.arcgis.geometry.IGeometry[]) . 
void 
addGeometry(IGeometry inGeometry,
Object before,
Object after)
Adds a reference to the input geometry either at the end, or before, or after the specified index. 
void 
addGeometryCollection(IGeometryCollection newGeometries)
Adds references to geometries in the input collection. 
void 
assign(IClone src)
Assigns the properties of src to the receiver. 
IGeometry 
buffer(double distance)
Constructs a polygon that is the locus of points at a distance less than or equal to a specified distance from this geometry. 
void 
clip(IEnvelope clipperEnvelope)
Constructs the intersection of this geometry and the specified envelope. 
void 
clipDense(IEnvelope clipperEnvelope,
double denseDistance)
Constructs the intersection of this geometry and the specified envelope; densifies lines in output contributed by the clipping envelope. 
void 
constructDivideEqual(IPolyline divideSource,
int numDivisions,
int divideHow)
Locates additional points equally spaced along the input polyline, and create either new segments, parts or polylines depending on the value of divideHow. 
void 
constructDivideLength(IPolyline divideSource,
double length,
boolean asRatio,
int divideHow)
Locates additional points along the input polyline, spaced at a specified interval, and create either new segments, parts, or polylines depending on the value of divideHow. 
void 
constructUnion(IEnumGeometry geometries)
Defines this geometry to be the union of the inputs. 
boolean 
contains(IGeometry other)
Indicates if this geometry contains the other geometry. 
boolean 
containsEx(IGeometry pOther,
int relation)
Indicates if this geometry contains the other geometry, optionally using Celementini's definition. 
IGeometry 
convexHull()
Constructs the convex hull of this geometry. 
boolean 
crosses(IGeometry other)
Indicates if the two geometries intersect in a geometry of lesser dimension. 
void 
cut(IPolyline cutter,
IGeometry[] leftGeom,
IGeometry[] rightGeom)
Splits this geometry into a part left of the cutting polyline, and a part right of it. 
IGeometry 
difference(IGeometry other)
Constructs the geometry containing points from this geometry but not the other geometry. 
boolean 
disjoint(IGeometry other)
Indicates if the two geometries share no points in common. 
boolean 
equals(Object o)
Compare this object with another 
IClone 
esri_clone()
Clones the receiver and assigns the result to *clone. 
boolean 
esri_equals(IGeometry other)
Indicates if the two geometries are of the same type and define the same set of points in the plane. 
void 
geometriesChanged()
Tells this geometry collection that some of its geometries have been altered. 
void 
geoNormalize()
Shifts longitudes, if need be, into a continuous range of 360 degrees. 
void 
geoNormalizeFromLongitude(double longitude)
Normalizes longitudes into a continuous range containing the longitude. 
IGeometry 
getBoundary()
The boundary of this geometry. 
IPoint 
getCentroidEx()
The center of gravity (centroid). 
void 
getClassID(GUID[] pClassID)
getClassID 
static String 
getClsid()
getClsid. 
int 
getCount()
The number of geometries in the enumeration. 
int 
getDimension()
The topological dimension of this geometry. 
IEnvelope 
getEnvelope()
Creates a copy of this geometry's envelope and returns it. 
IGeometry 
getGeometry(int index)
A reference to the ith geometry. 
int 
getGeometryCount()
The number of geometries in this collection. 
int 
getGeometryType()
The type of this geometry. 
void 
getSizeMax(_ULARGE_INTEGER[] pcbSize)
getSizeMax 
ISpatialReference 
getSpatialReference()
The spatial reference associated with this geometry. 
int 
hashCode()
the hashcode for this object 
void 
insertGeometries(int index,
int count,
IGeometry newGeometries)
Deprecated. This method uses C style arrays which are not supported in the ArcGIS API for Java. It is replaced by GeometryEnvironment.insertGeometries(com.esri.arcgis.geometry.IGeometryCollection, int, com.esri.arcgis.geometry.IGeometry[]) . 
void 
insertGeometryCollection(int index,
IGeometryCollection newGeometries)
Inserts at the specified index references to all if the geometries in the input collection. 
void 
interfaceSupportsErrorInfo(GUID riid)
interfaceSupportsErrorInfo 
IGeometry 
intersect(IGeometry other,
int resultDimension)
Constructs the geometry that is the settheoretic intersection of the input geometries. 
void 
invalidate()
Invalidate the spatial index. 
boolean 
isAllowIndexing()
Indicates whether to allow a spatial index to be created for this geometry. 
boolean 
isChanged()
Indicates if a geometry has been changed (edited, projected, etc). 
void 
isDirty()
isDirty 
boolean 
isEmpty()
Indicates whether this geometry contains any points. 
boolean 
isEqual(IClone other)
Indicates if the receiver and other have the same properties. 
boolean 
isIdentical(IClone other)
Indicates if the receiver and other are the same object. 
boolean 
isKnownSimple()
Indicates whether this geometry is known (or assumed) to be topologically correct. 
boolean 
isLosslessExport()
Indicates if this geometry bag exported itself to a shapefile buffer with no loss of information. 
boolean 
isNear(IGeometry pOther,
double distance)
Indicates if this geometry is within distance from the other geometry. 
boolean 
isSimple()
Indicates whether this geometry is known (or assumed) to be topologically correct, after explicitly determining this if the geometry is not already known (or assumed) to be simple. 
void 
load(IStream pstm)
load 
void 
move(double dx,
double dy)
Moves dx units horizontally and dy units vertically. 
void 
moveVector(ILine v)
Moves a direction and distance v. 
IGeometry 
next()
Returns the next geometry in the enumeration. 
boolean 
overlaps(IGeometry other)
Indicates if the intersection of the two geometries has the same dimension as one of the input geometries. 
void 
project(ISpatialReference newReferenceSystem)
Projects this geometry into a new spatial reference. 
void 
project5(ISpatialReference newSpatialReference,
int projectionHint)
Same as Project, but with additional parameter projectionHint. 
void 
projectEx(ISpatialReference newReferenceSystem,
int direction,
IGeoTransformation geoTransformation,
boolean bAngularDensify,
double maxSegmentLength,
double maxDeviation)
Projects a geometry, optionally applies a GeoTransformation, and optionally densifies the geometry. 
void 
projectEx5(ISpatialReference newReferenceSystem,
int direction,
ITransformation transformation,
boolean bAngularDensify,
double maxSegmentLength,
double maxDeviation,
int projectionHint)
Same as ProjectEx, but with additional parameter projectionHint. 
void 
queryClipped(IEnvelope clipperEnvelope,
IGeometry clippedGeometry)
Redefines clippedGeometry to be the intersection of this geometry and the clipping envelope. 
void 
queryClippedDense(IEnvelope clipperEnvelope,
double denseDistance,
IGeometry clippedGeometry)
Redefines clippedGeometry to be the intersection of this geometry and the clipping envelope; densifies lines in the output contributed by the clipping envelope. 
void 
queryEnvelope(IEnvelope outEnvelope)
Copies this geometry's envelope properties into the specified envelope. 
void 
queryGeometries(int index,
int count,
IGeometry[] geometries)
Deprecated. This method uses C style arrays which are not supported in the ArcGIS API for Java. It is replaced by GeometryEnvironment.queryGeometries(com.esri.arcgis.geometry.IGeometryCollection, int, com.esri.arcgis.geometry.IGeometry[][]) . 
void 
queryWKSEnvelope(_WKSEnvelope[] e)
Defines the specified wksenvelope to be the current extent of this geometry in the xy plane. 
void 
readExternal(ObjectInput in)

boolean 
relation(IGeometry other,
String relationDescription)
Indicates if the defined relationship exists. 
void 
removeGeometries(int index,
int count)
Removes references to some geometries from this collection. 
void 
reset()
Starts the enumeration at the beginning. 
void 
rotate(IPoint origin,
double rotationAngle)
Rotates about the specified origin point. 
void 
save(IStream pstm,
int fClearDirty)
save 
void 
scale(IPoint origin,
double sx,
double sy)
Scales about the specified origin using seperate horizonal and vertical scales. 
void 
setAllowIndexing(boolean allowIndexing)
Indicates whether to allow a spatial index to be created for this geometry. 
void 
setChanged(boolean isChanged)
Indicates if a geometry has been changed (edited, projected, etc). 
void 
setEmpty()
Removes all points from this geometry. 
void 
setGeometries(int count,
IGeometry newGeometries)
Deprecated. This method uses C style arrays which are not supported in the ArcGIS API for Java. It is replaced by GeometryEnvironment.setGeometries(com.esri.arcgis.geometry.IGeometryCollection, com.esri.arcgis.geometry.IGeometry[]) . 
void 
setGeometryCollection(IGeometryCollection newParts)
Replaces all geometries in the collection with references to geometries from the input collection. 
void 
setSpatialReferenceByRef(ISpatialReference spatialRef)
The spatial reference associated with this geometry. 
void 
simplify()
Makes this geometry topologically correct. 
void 
snapToSpatialReference()
Moves points of this geometry so that they can be represented in the precision of the geometry's associated spatial reference system. 
IGeometry 
symmetricDifference(IGeometry other)
Constructs the geometry that contains points from either but not both input geometries. 
boolean 
touches(IGeometry other)
Indicates if the boundaries of the geometries intersect. 
void 
transform(int direction,
ITransformation transformation)
Applies an arbitrary transformation. 
IGeometry 
union(IGeometry other)
Constructs the geometry that is the settheoretic union of the input geometries. 
boolean 
within(IGeometry other)
Indicates if this geometry is contained (is within) another geometry. 
boolean 
withinEx(IGeometry pOther,
int relation)
Indicates if this geometry contains the other geometry, optionally using Celementini's definition. 
void 
writeExternal(ObjectOutput out)

Methods inherited from class java.lang.Object 

clone, finalize, getClass, notify, notifyAll, toString, wait, wait, wait 
Methods inherited from interface com.esri.arcgis.interop.RemoteObjRef 

getJintegraDispatch, release 
Constructor Detail 

public GeometryBag() throws IOException, UnknownHostException
IOException
 if there are interop problems
UnknownHostException
 if there are interop problemspublic GeometryBag(Object obj) throws IOException
GeometryBag theGeometryBag = (GeometryBag) obj;
obj
to GeometryBag
.
obj
 an object returned from ArcGIS Engine or Server
IOException
 if there are interop problemsMethod Detail 

public static String getClsid()
public boolean equals(Object o)
equals
in class Object
public int hashCode()
hashCode
in class Object
public int getGeometryType() throws IOException, AutomationException
esriGeometryNull = 0
esriGeometryPoint = 1
esriGeometryMultipoint = 2
esriGeometryPolyline = 3
esriGeometryPolygon = 4
esriGeometryEnvelope = 5
esriGeometryPath = 6
esriGeometryAny = 7
esriGeometryMultiPatch = 9
esriGeometryRing = 11
esriGeometryLine = 13
esriGeometryCircularArc = 14
esriGeometryBezier3Curve = 15
esriGeometryEllipticArc = 16
esriGeometryBag = 17
esriGeometryTriangleStrip = 18
esriGeometryTriangleFan = 19
esriGeometryRay = 20
esriGeometrySphere = 21
getGeometryType
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public int getDimension() throws IOException, AutomationException
Returns the dimension of the geometry object based on the geometry's type.
getDimension
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public ISpatialReference getSpatialReference() throws IOException, AutomationException
Returns and sets the Spatial Reference in which the geometry exists. If the spatial reference has not been set the property will return an empty ISpatialReference instance.
getSpatialReference
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setSpatialReferenceByRef(ISpatialReference spatialRef) throws IOException, AutomationException
setSpatialReferenceByRef
in interface IGeometry
spatialRef
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isEmpty() throws IOException, AutomationException
IsEmpty returns TRUE when the Geometry object does not contain geometric information beyond its original initialization state. An object may be returned to its original initialization (IsEmpty = TRUE) state using SetEmpty.
isEmpty
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setEmpty() throws IOException, AutomationException
SetEmpty returns the Geometry to its original initialization state by releasing all data referenced by the Geometry.
setEmpty
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryEnvelope(IEnvelope outEnvelope) throws IOException, AutomationException
Returns the unique Envelope that binds the Geometry object. This is the smallest Envelope that Contains the object.
Note: The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
queryEnvelope
in interface IGeometry
outEnvelope
 A reference to a com.esri.arcgis.geometry.IEnvelope (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IEnvelope getEnvelope() throws IOException, AutomationException
Returns the unique Envelope that binds the Geometry object. This is the smallest Envelope that Contains the object.
getEnvelope
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void project(ISpatialReference newReferenceSystem) throws IOException, AutomationException
To Project, the geometry needs to have a Spatial Reference set, and not have an UnknownCoordinateSystem. The new spatial reference system passed to the method defines the output coordinate system. If either spatial reference is Unknown, the coordinates are not changed. The Z and measure values are not changed by the Project method.
A geometry is not densified before it is projected. This can lead to the output geometries not reflecting the 'true' shape in the new coordinate system. A straight line in one coordinate system is not necessarily a straight line in a different coordinate system. Use IGeometry2::ProjectEx if you want to densify the geometries while they are projected.
The Project method must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometry types.
If a geometry is projected to a projected coordinate system that can't represent the geographic area where the geometry is located (or if trying to move an xy coordinate from outside the projected coordinate system back into geographic), the geometry will be set to empty.
Note: This method can only be called upon the top level geometries (Points, Multipoints, Polylines and Polygons). If the from/to spatial references have different geographic coordinate systems, the Project method looks for a GeoTransformationsOperationSet. If the set of Geotransformations is present in memory, Project will use it to perform a geographic/datum Transformation. To use a specific geotransformation, use the IGeometry2::ProjectEx method.
project
in interface IGeometry
newReferenceSystem
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void snapToSpatialReference() throws IOException, AutomationException
snapToSpatialReference
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void geoNormalize() throws IOException, AutomationException
geoNormalize
in interface IGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void geoNormalizeFromLongitude(double longitude) throws IOException, AutomationException
geoNormalizeFromLongitude
in interface IGeometry
longitude
 The longitude (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void projectEx(ISpatialReference newReferenceSystem, int direction, IGeoTransformation geoTransformation, boolean bAngularDensify, double maxSegmentLength, double maxDeviation) throws IOException, AutomationException
By default, ProjectEx will not densify geometries as they are projected. This can lead to the output geometries not reflecting the 'true' shape in the new coordinate system. A straight line in one coordinate system is not necessarily a straight line in a different coordinate system. Set the bAngularDensify parameter if you want to densify the geometries while they are projected.
projectEx
in interface IGeometry2
newReferenceSystem
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)direction
 A com.esri.arcgis.geometry.esriTransformDirection constant (in)geoTransformation
 A reference to a com.esri.arcgis.geometry.IGeoTransformation (in)bAngularDensify
 The bAngularDensify (in)maxSegmentLength
 The maxSegmentLength (in)maxDeviation
 The maxDeviation (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryWKSEnvelope(_WKSEnvelope[] e) throws IOException, AutomationException
The QueryWKSEnvelope method returns a WKSEnvelope structure corresponding to the envelope of the geometry. Use that method to quickly get the XMin, XMax, YMin and YMax values.
queryWKSEnvelope
in interface IGeometry3
e
 A Structure: com.esri.arcgis.system._WKSEnvelope (A com.esri.arcgis.system._WKSEnvelope COM typedef) (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isChanged() throws IOException, AutomationException
The Changed method returns whether or not the geometry has been modified. If the geometry always stays in memory that method only returns 'false' immediately after its creation. However if the shape came from disk the Changed method will return 'false' until de geometry is modified in memory.
isChanged
in interface IGeometry4
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setChanged(boolean isChanged) throws IOException, AutomationException
setChanged
in interface IGeometry4
isChanged
 The isChanged (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void project5(ISpatialReference newSpatialReference, int projectionHint) throws IOException, AutomationException
To Project, the geometry needs to have a Spatial Reference set, and not have an UnknownCoordinateSystem. The new spatial reference system passed to the method defines the output coordinate system. If either spatial reference is Unknown, the coordinates are not changed. The Z and measure values are not changed by the Project method.
A geometry is not densified before it is projected. This can lead to the output geometries not reflecting the 'true' shape in the new coordinate system. A straight line in one coordinate system is not necessarily a straight line in a different coordinate system. Use IGeometry2::ProjectEx if you want to densify the geometries while they are projected.
The projectionHint parameter contains information about whether a geometry will cross the coordinate system horizons. If it doesn't, parts of the code that check this and intersect the geometry with the horizons can be omitted. This can dramatically improve performance. Use ISpatialReference3::ProjectionHint to initialize this parameter.
project5
in interface IGeometry5
newSpatialReference
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)projectionHint
 The projectionHint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void projectEx5(ISpatialReference newReferenceSystem, int direction, ITransformation transformation, boolean bAngularDensify, double maxSegmentLength, double maxDeviation, int projectionHint) throws IOException, AutomationException
The projectionHint parameter contains information about whether a geometry will cross the coordinate system horizons. If it doesn't, parts of the code that check this and intersect the geometry with the horizons can be omitted. This can dramatically improve performance. Use ISpatialReference3::ProjectionHint to initialize this parameter.
By default, ProjectEx will not densify geometries as they are projected. This can lead to the output geometries not reflecting the 'true' shape in the new coordinate system. A straight line in one coordinate system is not necessarily a straight line in a different coordinate system. Set the bAngularDensify parameter if you want to densify the geometries while they are projected.
projectEx5
in interface IGeometry5
newReferenceSystem
 A reference to a com.esri.arcgis.geometry.ISpatialReference (in)direction
 A com.esri.arcgis.geometry.esriTransformDirection constant (in)transformation
 A reference to a com.esri.arcgis.geometry.ITransformation (in)bAngularDensify
 The bAngularDensify (in)maxSegmentLength
 The maxSegmentLength (in)maxDeviation
 The maxDeviation (in)projectionHint
 The projectionHint (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IPoint getCentroidEx() throws IOException, AutomationException
getCentroidEx
in interface IGeometry5
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isLosslessExport() throws IOException, AutomationException
currently not implemented; always returns FALSE.
isLosslessExport
in interface IGeometryBag
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean esri_equals(IGeometry other) throws IOException, AutomationException
esri_equals
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean touches(IGeometry other) throws IOException, AutomationException
Two geometries are said to touch when the intersection of the geometries is nonempty, but the intersection of their interiors is empty. Touches is a Clementini operator. For example, a point touches a polyline only if the point is coincident with one of the polyline end points.
Touches examples. Only "true" relationships are showed in this picture.
Only geometries that support the IRelationalOperator interface can be used as input geometries.
Touch does not apply for point/point comparison.
If either one of the two geometries is empty, the geometries are not touched.
touches
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean contains(IGeometry other) throws IOException, AutomationException
The base geometry contains the comparison geometry (other) if the comparison geometry is a subset of the base geometry and the intersection of their interiors is not empty. Therefore a polygon does not contain any part of its 1D boundary. Contains is the opposite operator of Within.
Only geometries that support the IRelationalOperator interface can be used as input geometries.
If geometry1 Contains geometry2, then geometry2 is Within geometry1.
An empty geometry does not contain another geometry. On the other hand, an empty geometry is contained in another geometry, unless the other geometry is empty.
Contains examples. Only "true" relationships are showed in this picture.
contains
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean within(IGeometry other) throws IOException, AutomationException
The base geometry is within the comparison geometry if the base geometry is the intersection of the geometries and the intersection of their interiors is not empty. Within is a Clementini operator. Within is the opposite operator of contains.
Only geometries that support the IRelationalOperator interface can be used as input geometries.
If geometry1 is Within geometry2, then geometry2 Contains geometry1.
An empty geometry is within another geometry, unless the other geometry is empty.
Within examples. Only "true" relationships are showed in this picture.
within
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean disjoint(IGeometry other) throws IOException, AutomationException
Two geometries are disjoint if their intersection is empty. Two geometries intersect if disjoint is "false". Disjoint is a Clementini operator.
Only geometries that support the IRelationalOperator interface can be used as input geometries.
Two geometries are disjoint if either one is empty.
Disjoint example. Only "true" relationships are showed in this picture.
disjoint
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean crosses(IGeometry other) throws IOException, AutomationException
Two polylines cross if they share only points in common, at least one of which is not an endpoint. A polyline and an polygon cross if they share a polyline or a point (for vertical line) in common on the interior of the polygon which is not equivalent to the entire polyline. Cross is a Clementini operator.
Only geometries that support the IRelationalOperator interface can be used as input geometries.
Cross only applies to polyline/polyline, polyline/polygon, or polygon/polyline relations.
If either one of the geometries is empty, the geometries do not cross.
Crosses examples. Only "true" relationships are showed in this picture.
crosses
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean overlaps(IGeometry other) throws IOException, AutomationException
Two geometries overlap if the region of their intersection is of the same dimension as the geometries involved and is not equivalent to either of the geometries. Overlaps is a Clementini operator.
Only geometries that support the IRelationalOperator interface can be used as input geometries.
Overlaps only applies to polyline/polyline, polygon/polygon and multipoint/multipoint relations.
Two geometries do not overlap if either one is empty.
Overlaps examples. Only "true" relationships are showed in this picture.
overlaps
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean relation(IGeometry other, String relationDescription) throws IOException, AutomationException
Relation allows a general relation defined using the Shape Comparison Language to be determined between two input geometries. The Shape Comparison Language is based on the CalculusBased Method (CBM), as described and defined by Clementini and Felice, but has some extensions specific to working with vertexbased geometries and is fully described in the Technical Documents section of the ArcObjects Developer Help. Please refer to the Shape Comparison Language documentation for proper syntax and available functionality.
Note that at the current release, Relation only operates with straight lines.
Here is a VBA example of using the "RELATE" function to detect overlapping polylines. It assumes two polyline features are selected. G1 and G2 are placeholders for, in this example, the VBA variables r1 and r2.
Option Explicit
Public Sub overlapstest()
Dim ef As IEnumFeature
Dim d As IMxDocument
Set d = ThisDocument
Set ef = d.FocusMap.FeatureSelection
Dim r1 As IRelationalOperator, r2 As IRelationalOperator
Set r1 = ef.Next.Shape
Set r2 = ef.Next.Shape
Debug.Print "relation:", r1.Relation(r2, "RELATE(G1, G2, ""1********"")")
End Sub
relation
in interface IRelationalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)relationDescription
 The relationDescription (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean containsEx(IGeometry pOther, int relation) throws IOException, AutomationException
containsEx
in interface IRelationalOperator2
pOther
 A reference to a com.esri.arcgis.geometry.IGeometry (in)relation
 A com.esri.arcgis.geometry.esriSpatialRelationExEnum constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean withinEx(IGeometry pOther, int relation) throws IOException, AutomationException
withinEx
in interface IRelationalOperator2
pOther
 A reference to a com.esri.arcgis.geometry.IGeometry (in)relation
 A com.esri.arcgis.geometry.esriSpatialRelationExEnum constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isNear(IGeometry pOther, double distance) throws IOException, AutomationException
isNear
in interface IRelationalOperator2
pOther
 A reference to a com.esri.arcgis.geometry.IGeometry (in)distance
 The distance (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isSimple() throws IOException, AutomationException
Returns TRUE if the geometry is topologically Simple (refer to the discussion for the Simplify method). If the geometry is not Simple, it may be necessary to call Simplify to enforce topological consistency. Editing a geometry can change the IsSimple state of the geometry.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
The xy cluster tolerance value of the geometry's associated spatial reference is used by this method. If the goal of this method is to determine if a geometry can be persisted in an sde (or other integerbased) layer without alteration, you may wish to use the minimum xy cluster tolerance value (ISpatialReferenceTolerance::SetMinimumXYTolerance) before applying this method (don't forget to set it back).
This method does not support GeometryBags.
isSimple
in interface ITopologicalOperator
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isKnownSimple() throws IOException, AutomationException
Returns TRUE when the geometry is aware that it is Simple. IsKnownSimple may return FALSE even if the geometry is simple as long as the geometry is not aware of its IsSimple state. Calling either IsSimple or Simplify makes the IsSimple state known to the geometry. Topologically altering the geometry makes the IsKnownSimple state FALSE until the IsSimple state is again checked.
Here is the status of the IsKnownSimple flag in some common situations:
IsKnownSimple = 'False'
 A nonempty newly created geometry. For example, creating a polygon using IPointCollection sets the flag IsKnownSimple = 'false' on that geometry.
 Geometry after projection (IGeometry::Project )
 Geometry after generalization (IPolycurve::Generalize ) or smoothing(IPolycurve::Smooth )
 …
IsKnownSimple = 'True'
 A geometry coming directly from a feature class
 An empty geometry
 Output geometry of any method on ITopologicalOperator
 …
This method does not support GeometryBags.
isKnownSimple
in interface ITopologicalOperator
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void simplify() throws IOException, AutomationException
Simplify permanently alters the input geometry, making its definition "topologically legal" with respect to its geometry type:
The XY tolerance property of the geometry's associated spatial
reference is used during the simplify operation for polylines and
polygons.
This method first looks at the ITopologicalOperator::IsKnownSimple flag before starting processing. If the flag is 'true' then operation is interrupted and the geometry is considered simple. If the flag is 'false' then the geometry consistency is checked and the geometry is updated as needed.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
simplify
in interface ITopologicalOperator
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry buffer(double distance) throws IOException, AutomationException
The buffer distance is in the same units as the source shape that
is being buffered.
A negative distance can be specified to produce a buffer inside
the original polygon. This cannot be used with polyline.
ITopologicalOperator methods must be applied on toplevel
geometries only. TopLevel geometries are point, multipoint,
polyline and polygon. To use this method with
segments (Line, Circular Arc, Elliptic Arc, Bézier Curve),
paths or rings, they must be wrapped with a toplevel type.
buffer
in interface ITopologicalOperator
distance
 The distance (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry convexHull() throws IOException, AutomationException
The ConvexHull of a geometry is the minimal bounding polygon such that all outer angles are convex. The ConvexHull of a point is the point itself.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
ConvexHull method does not deal with Z attribute now.
convexHull
in interface ITopologicalOperator
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry intersect(IGeometry other, int resultDimension) throws IOException, AutomationException
The Intersection of two Geometries of the same Dimension is a Geometry containing only the regions of overlap between the original geometries.
Intersection is basically an AND between input geometries.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
Since ArcGIS 9.2, Intersect has a larger cost  it takes longer to run the method. Therefore, it is a better approach to test if the two geometries are disjoint before calling Intersect.
intersect
in interface ITopologicalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)resultDimension
 A com.esri.arcgis.geometry.esriGeometryDimension constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.IConstructMultipoint.constructIntersectionEx(com.esri.arcgis.geometry.ISegment, int, com.esri.arcgis.geometry.ISegment, int, double[], double[], int[])
,
IConstructMultipoint.constructIntersection(com.esri.arcgis.geometry.ISegment, int, com.esri.arcgis.geometry.ISegment, int, Object[], Object[], Object[])
,
ITopologicalOperator.intersect(com.esri.arcgis.geometry.IGeometry, int)
public IGeometry union(IGeometry other) throws IOException, AutomationException
The Union of two Geometries of the same Dimension is a single Geometry corresponding to the combination of both Geometries such that anything within either of the original geometries is also part of the unioned geometry, but anything common to both geometries only exists once in the unioned geometry.
The Union is basically an OR between the input geometries.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
union
in interface ITopologicalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void constructUnion(IEnumGeometry geometries) throws IOException, AutomationException
ConstructUnion simultaneously Unions an Enumeration of geometries of the same Dimension into a single geometry. ConstructUnion is more efficient for unioning a large collection of geometries simultaneously rather than cycling through each geometry individually.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
Temproray files might be created. If environment variable
"ARCTMPDIR" exists, then the files are written to the path,
otherwise written to current directory or system temp
directory.
constructUnion
in interface ITopologicalOperator
geometries
 A reference to a com.esri.arcgis.geometry.IEnumGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry difference(IGeometry other) throws IOException, AutomationException
Difference create a Geometry that is composed only of the region unique to the base geometry but not part of the input geometry.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
difference
in interface ITopologicalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry symmetricDifference(IGeometry other) throws IOException, AutomationException
The SymmetricDifference between two Geometries of the same Dimension is the Union of those Geometries minus the Intersection of those Geometries. Thus, the SymmetricDifference is composed only of regions unique to only one of the geometries.
This method does not support GeometryBags.
SymmetricDifference is basically an XOR between the input geometries.
SymmetricDifference of G1 and G2 can also be described as the Union(Difference(G1, G2), Difference(G2, G1)).
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
symmetricDifference
in interface ITopologicalOperator
other
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void clip(IEnvelope clipperEnvelope) throws IOException, AutomationException
The Clip method clips the geometry of the feature that is receiving the method call. The Clip method does not return an envelope. The geometry that is clipped will depend on what is Contained by the input clipperEnvelope.
Use QueryClipped or QueryClippedDense methods to send the results to a different polygon.
ITopologicalOperator methods must be applied on highlevel
geometries only. HighLevel geometries are point, multipoint,
polyline and polygon. To use this method with
lowlevel geometries such as segments (Line, Circular Arc, Elliptic
Arc, Bézier Curve), paths or rings, they must be wrapped
into highlevel geometries types.
clip
in interface ITopologicalOperator
clipperEnvelope
 A reference to a com.esri.arcgis.geometry.IEnvelope (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryClipped(IEnvelope clipperEnvelope, IGeometry clippedGeometry) throws IOException, AutomationException
QueryClipped returns the portion of the input Geometry that is Contained by the input Envelope. The returned geometry is the same type as the original geometry.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
The other geometry must be an highlevel geometry. HighLevel geometries are point, multipoint, polyline and polygon. To use it with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), path or ring they must be wrapped into highlevel geometries type. The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
This method does not support GeometryBags.
queryClipped
in interface ITopologicalOperator
clipperEnvelope
 A reference to a com.esri.arcgis.geometry.IEnvelope (in)clippedGeometry
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryClippedDense(IEnvelope clipperEnvelope, double denseDistance, IGeometry clippedGeometry) throws IOException, AutomationException
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
The other geometry must be an highlevel geometry. HighLevel geometries are point, multipoint, polyline and polygon. To use it with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), path or ring they must be wrapped into highlevel geometries type. The output geometry must be cocreated prior to the query. The output geometry is not cocreated by the method; it is populated. This can be used in performance critical situations. For example, creating the geometry only once outside a loop and use the query method could improve performance.
This method does not support GeometryBags.
queryClippedDense
in interface ITopologicalOperator
clipperEnvelope
 A reference to a com.esri.arcgis.geometry.IEnvelope (in)denseDistance
 The denseDistance (in)clippedGeometry
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void cut(IPolyline cutter, IGeometry[] leftGeom, IGeometry[] rightGeom) throws IOException, AutomationException
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
When a polyline/polygon is cut, it is split where it intersects the cutter polyline. Each piece is classified as ‘left of’ or ‘right of’ the cutter. This classification is based on the orientation of the cutter line. Parts of the target polyline that do not intersect the cutting polyline are returned as part of the ‘right of’ result for that input polyline. If a geometry is not cut, the left geometry will be empty.
When using a multipart polyline to cut a single ring of a polyline, the orientation of the polyline paths is important. The cut piece of the ring must be on the same side of each cutting path as defined by the orientation of each path.
This method does not support GeometryBags.
cut
in interface ITopologicalOperator
cutter
 A reference to a com.esri.arcgis.geometry.IPolyline (in)leftGeom
 A reference to a com.esri.arcgis.geometry.IGeometry (out: use single element array)rightGeom
 A reference to a com.esri.arcgis.geometry.IGeometry (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry getBoundary() throws IOException, AutomationException
The Boundary of a Geometry is the part one the exterior of the Geometry. The Boundary is one Dimension lower than the Dimension of the original Geometry. The Boundary of a Polygon are the Polylines that form the Rings of the Polygon. The Boundary of a Polyline is a Multipoint corresponding to the endpoints of each Path in the Polyline. The Boundary of a Multipoint is an empty set.
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
getBoundary
in interface ITopologicalOperator
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void clipDense(IEnvelope clipperEnvelope, double denseDistance) throws IOException, AutomationException
ITopologicalOperator methods must be applied on highlevel geometries only. HighLevel geometries are point, multipoint, polyline and polygon. To use this method with lowlevel geometries such as segments (Line, Circular Arc, Elliptic Arc, Bézier Curve), paths or rings, they must be wrapped into highlevel geometries types.
This method does not support GeometryBags.
clipDense
in interface ITopologicalOperator
clipperEnvelope
 A reference to a com.esri.arcgis.geometry.IEnvelope (in)denseDistance
 The denseDistance (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public int getGeometryCount() throws IOException, AutomationException
Returns the number of Geometries in the GeometryCollection. The last Geometry in the GeometryCollection has an index equal to GeometryCount  1.
getGeometryCount
in interface IGeometryCollection
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry getGeometry(int index) throws IOException, AutomationException
getGeometry
in interface IGeometryCollection
index
 The index (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void addGeometry(IGeometry inGeometry, Object before, Object after) throws IOException, AutomationException
When applying the AddGeometry method give either the before or after index and not both. Adding a Geometry to the collection as the first one is done by setting the before index as 0.
The spatial reference of the GeometryCollection is transferred
(objects projected if necessary) to any objects added to
it. However the spatial reference of the added geometry is not
transferred to the GeometryCollection. Always make sure to set
the spatial reference on the object GeometryCollection prior to add
other geometries to it to avoid creating invalid geometry. For
example, adding geometry objects to a GeometryBag that doesn't have
a welldefined spatial reference will set an undefined spatial
reference to all the objects added to the bag. Using this
GeometryBag may cause unexpected behavior with the
ITopologicalOperator::ConstructUnion method.
addGeometry
in interface IGeometryCollection
inGeometry
 A reference to a com.esri.arcgis.geometry.IGeometry (in)before
 A Variant (in, optional, pass null if not required)after
 A Variant (in, optional, pass null if not required)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void queryGeometries(int index, int count, IGeometry[] geometries) throws IOException, AutomationException
GeometryEnvironment.queryGeometries(com.esri.arcgis.geometry.IGeometryCollection, int, com.esri.arcgis.geometry.IGeometry[][])
.
Note: The GeometryType returned by the QueryGeometries method depends on which object type points the IGeometryCollection pointer.
IGeometryCollection Object GeometryType  Returned Object GeometryType 
Polygon 
Rings 
Polyline 
Paths 
Multipoint 
Points 
Multipatch 
TriangleFans or TriangleStrips or Rings 
TriangleFan 
Points 
TriangleStrip 
Points 
Geometry Bag 
Any type of IGeometry 
queryGeometries
in interface IGeometryCollection
index
 The index (in)count
 The count (in)geometries
 A reference to a com.esri.arcgis.geometry.IGeometry (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void addGeometries(int count, IGeometry newGeometries) throws IOException, AutomationException
GeometryEnvironment.addGeometries(com.esri.arcgis.geometry.IGeometryCollection, com.esri.arcgis.geometry.IGeometry[])
.
The geometries are added last in the list. Use an array of geometries (IGeometry) and the exact number (count ) of elements in the array. Exceeding the boundary of the array will cause an application error. If you don't want to place the geometries last in the collection then use the InsertGeometries method.
addGeometries
in interface IGeometryCollection
count
 The count (in)newGeometries
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void addGeometryCollection(IGeometryCollection newGeometries) throws IOException, AutomationException
Adds references of all of the parts of the input GeometryCollection to the end of the current GeometryCollection.
addGeometryCollection
in interface IGeometryCollection
newGeometries
 A reference to a com.esri.arcgis.geometry.IGeometryCollection (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void insertGeometries(int index, int count, IGeometry newGeometries) throws IOException, AutomationException
GeometryEnvironment.insertGeometries(com.esri.arcgis.geometry.IGeometryCollection, int, com.esri.arcgis.geometry.IGeometry[])
.
The geometries are inserted before the ith (index) element in the list. Use an array of geometries and give the exact number (count ) of elements in the array. A too large value for the count parameter causes exceeding the boundary of the array and will cause an application error. To place the geometries last in the collection then use the addGeometries method.
insertGeometries
in interface IGeometryCollection
index
 The index (in)count
 The count (in)newGeometries
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void insertGeometryCollection(int index, IGeometryCollection newGeometries) throws IOException, AutomationException
InsertGeometryCollection merges one GeometryCollection within another at a specified index.
insertGeometryCollection
in interface IGeometryCollection
index
 The index (in)newGeometries
 A reference to a com.esri.arcgis.geometry.IGeometryCollection (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setGeometries(int count, IGeometry newGeometries) throws IOException, AutomationException
GeometryEnvironment.setGeometries(com.esri.arcgis.geometry.IGeometryCollection, com.esri.arcgis.geometry.IGeometry[])
.
SetGeometries is used to reset the references of the geometries within the GeometryCollection . The result is that all references are changed to point only at the geometries contained within the specified array. Note that the GeometryCount changes accordingly also.
setGeometries
in interface IGeometryCollection
count
 The count (in)newGeometries
 A reference to a com.esri.arcgis.geometry.IGeometry (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setGeometryCollection(IGeometryCollection newParts) throws IOException, AutomationException
SetGeometryCollection copies the geometry references from one GeometryCollection to another.
VB Example: Set GeometryCollection m_pGeoColl_A as m_pGeoColl_B
m_pGeoColl_A.SetGeometryCollection m_pGeoColl_B
setGeometryCollection
in interface IGeometryCollection
newParts
 A reference to a com.esri.arcgis.geometry.IGeometryCollection (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void removeGeometries(int index, int count) throws IOException, AutomationException
removeGeometries
in interface IGeometryCollection
index
 The index (in)count
 The count (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void geometriesChanged() throws IOException, AutomationException
GeometriesChanged flags that the geometries have been changed. It also marks a top level geometry as being nonsimple. Use it when manipulating the parts of a geometry directly (for example, rotating a ring). The top level geometry won't know that its cached envelope, length, centroid, etc. are invalid until this method is used.
geometriesChanged
in interface IGeometryCollection
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IGeometry next() throws IOException, AutomationException
Returns the Next Geometry part from the current enumeration location.
next
in interface IEnumGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void reset() throws IOException, AutomationException
Resets the current enumeration location to the null pointer at the beginning of the enumeration such that the Next Geometry is the first Geometry part in the enumeration.
reset
in interface IEnumGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public int getCount() throws IOException, AutomationException
Returns the number of distinct geometry parts in the enumeration. This count is the same as the count returned by GeometryCount in a GeometryCollection.
getCount
in interface IEnumGeometry
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void constructDivideEqual(IPolyline divideSource, int numDivisions, int divideHow) throws IOException, AutomationException
constructDivideEqual
in interface IConstructGeometryCollection
divideSource
 A reference to a com.esri.arcgis.geometry.IPolyline (in)numDivisions
 The numDivisions (in)divideHow
 A com.esri.arcgis.geometry.esriConstructDivideEnum constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void constructDivideLength(IPolyline divideSource, double length, boolean asRatio, int divideHow) throws IOException, AutomationException
constructDivideLength
in interface IConstructGeometryCollection
divideSource
 A reference to a com.esri.arcgis.geometry.IPolyline (in)length
 The length (in)asRatio
 The asRatio (in)divideHow
 A com.esri.arcgis.geometry.esriConstructDivideEnum constant (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void interfaceSupportsErrorInfo(GUID riid) throws IOException, AutomationException
Indicates whether the interface supports IErrorInfo.
interfaceSupportsErrorInfo
in interface ISupportErrorInfo
riid
 A Structure: com.esri.arcgis.support.ms.stdole.GUID (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public IClone esri_clone() throws IOException, AutomationException
esri_clone
in interface IClone
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void assign(IClone src) throws IOException, AutomationException
assign
in interface IClone
src
 A reference to a com.esri.arcgis.system.IClone (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isEqual(IClone other) throws IOException, AutomationException
IsEqual returns True if the receiver and the source have the same properties. Note, this does not imply that the receiver and the source reference the same object.
isEqual
in interface IClone
other
 A reference to a com.esri.arcgis.system.IClone (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isIdentical(IClone other) throws IOException, AutomationException
IsIdentical returns true if the receiver and the source reference the same object.
isIdentical
in interface IClone
other
 A reference to a com.esri.arcgis.system.IClone (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void getClassID(GUID[] pClassID) throws IOException, AutomationException
IPersist is a Microsoft interface. Please refer to MSDN for information about this interface.
getClassID
in interface IPersist
pClassID
 A Structure: com.esri.arcgis.support.ms.stdole.GUID (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void isDirty() throws IOException, AutomationException
IPersistStream is a Microsoft interface. Please refer to MSDN for information about this interface.
isDirty
in interface IPersistStream
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void load(IStream pstm) throws IOException, AutomationException
IPersistStream is a Microsoft interface. Please refer to MSDN for information about this interface.
load
in interface IPersistStream
pstm
 A reference to a com.esri.arcgis.system.IStream (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void save(IStream pstm, int fClearDirty) throws IOException, AutomationException
IPersistStream is a Microsoft interface. Please refer to MSDN for information about this interface.
save
in interface IPersistStream
pstm
 A reference to a com.esri.arcgis.system.IStream (in)fClearDirty
 The fClearDirty (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void getSizeMax(_ULARGE_INTEGER[] pcbSize) throws IOException, AutomationException
IPersistStream is a Microsoft interface. Please refer to MSDN for information about this interface.
getSizeMax
in interface IPersistStream
pcbSize
 A Structure: com.esri.arcgis.system._ULARGE_INTEGER (out: use single element array)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void move(double dx, double dy) throws IOException, AutomationException
Moves the Geometry dX units along the XAxis and dY units along the YAxis. Only changes the position of the Geometry without altering any of the other characteristics. Move is a spatial offset.
move
in interface ITransform2D
dx
 The dx (in)dy
 The dy (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void moveVector(ILine v) throws IOException, AutomationException
Moves the Geometry dX units along the XAxis and dY units along the YAxis, where dX and dY are calculated from the input vector Line. Only the Length and Angle of the vector affect the transformation. The location of the vector does not change the transformation. Only changes the position of the Geometry without altering any of the other characteristics. Move is a spatial offset.
moveVector
in interface ITransform2D
v
 A reference to a com.esri.arcgis.geometry.ILine (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void scale(IPoint origin, double sx, double sy) throws IOException, AutomationException
Stretches the Geometry a factor of sX along the XAxis and a factor of sY along the YAxis (where sX is the ratio of Old Width to New Width, and sY is the ratio of Old Height to New Height). The Origin point is the reference Point from which the transformation is performed (Regardless of the location of the Origin point, the Geometry resulting from the transformation is the same, except for a positional offset). The Origin is the only point in the transformation guaranted to remain in the same location after the transformation is complete.
Note: Caution must be taken when scaling a CircularArc or a geometry containing CircularArc segments. Unless Abs(ScaleX) = Abs(ScaleY), the resulting CircularArcs will not retain the characteristics of the original geometry (since they remain CircularArcs).
scale
in interface ITransform2D
origin
 A reference to a com.esri.arcgis.geometry.IPoint (in)sx
 The sx (in)sy
 The sy (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void rotate(IPoint origin, double rotationAngle) throws IOException, AutomationException
Rotate performs an angular transform (rotation) on the Geometry. The Origin is the only point in the transformation guaranteed to remain in the same location after the transformation is performed. Regardless of the Origin, the transformed Geometry is the same, except for a positional offset. The RotationAngle is measured in radians.
An Envelope cannot be Rotated.
rotate
in interface ITransform2D
origin
 A reference to a com.esri.arcgis.geometry.IPoint (in)rotationAngle
 The rotationAngle (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void transform(int direction, ITransformation transformation) throws IOException, AutomationException
transform
in interface ITransform2D
direction
 A com.esri.arcgis.geometry.esriTransformDirection constant (in)transformation
 A reference to a com.esri.arcgis.geometry.ITransformation (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void setAllowIndexing(boolean allowIndexing) throws IOException, AutomationException
The SpatialIndex if enabled is used by the IRelationalOperator's methods.
setAllowIndexing
in interface ISpatialIndex
allowIndexing
 The allowIndexing (in)
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public boolean isAllowIndexing() throws IOException, AutomationException
isAllowIndexing
in interface ISpatialIndex
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void invalidate() throws IOException, AutomationException
invalidate
in interface ISpatialIndex
IOException
 If there are interop problems.
AutomationException
 If the ArcObject component throws an exception.public void writeExternal(ObjectOutput out) throws IOException
writeExternal
in interface Externalizable
IOException
public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException
readExternal
in interface Externalizable
IOException
ClassNotFoundException


PREV CLASS NEXT CLASS  FRAMES NO FRAMES  
SUMMARY: NESTED  FIELD  CONSTR  METHOD  DETAIL: FIELD  CONSTR  METHOD 