Surface Slope (3D Analyst)

Summary

Creates polygon features from the triangle slope values of a TIN or terrain dataset.

Learn more about how Surface Slope works

Illustration

Surface Slope illustration

Usage

Syntax

SurfaceSlope_3d (in_surface, out_feature_class, {units}, {class_breaks_table}, {slope_field}, {z_factor}, {pyramid_level_resolution})
ParameterExplanationData Type
in_surface

The input terrain or TIN dataset.

Tin Layer; Terrain Layer
out_feature_class

The output feature class.

Feature Class
units
(Optional)

The units of measure to be used in calculating slope.

  • PERCENTSlope is expressed as a percentage value. This is the default.
  • DEGREESlope is expressed as the angle of inclination from a horizontal plane.
String
class_breaks_table
(Optional)

A table containing the classification breaks that will be used to classify the output features. The first column of this table will indicate the break point, whereas the second will provide the classification code.

Table
slope_field
(Optional)

The field containing slope values.

String
z_factor
(Optional)

The factor by which elevation values will be multiplied. This is typically used to convert Z linear units that match those of the XY linear units. The default is 1, which leaves elevation values unchanged.

Double
pyramid_level_resolution
(Optional)

The z-tolerance or window-size resolution of the terrain pyramid level that will be used by this tool. The default is 0, or full resolution.

Double

Code Sample

SurfaceSlope example 1 (Python window)

The following sample demonstrates the use of this tool in the Python window:

import arcpy
from arcpy import env

arcpy.CheckOutExtension("3D")
env.workspace = "C:/data"
arcpy.SurfaceSlope_3d("sample.gdb/featuredataset/terrain", "s_slope.shp", "PERCENT")
SurfaceSlope example 2 (stand-alone script)

The following sample demonstrates the use of this tool in a stand-alone Python script:

'''****************************************************************************
Name: SurfaceSlope Example
Description: This script demonstrates how to use the 
             SurfaceAspect and SurfaceSlope tools to generate a polygon
             that contains the intersection of both 
****************************************************************************'''

# Import system modules
import arcpy
from arcpy import env

# Obtain a license for the ArcGIS 3D Analyst extension
arcpy.CheckOutExtension("3D")

# Set environment settings
env.workspace = "C:/data"

try:
    # List all TINs in workspace
    listTINs = arcpy.ListDatasets("","TIN")
    # Determine whether the list contains any TINs
    if len(listTINs) > 0:
        for dataset in listTINs:
            print dataset
            # Set Local Variables
            aspect = arcpy.CreateUniqueName("Aspect.shp")
            slope = arcpy.CreateUniqueName("Slope.shp")
            outFC = dataset + "_Aspect_Slope.shp"
            #Execute SurfaceAspect
            arcpy.SurfaceAspect_3d(dataset, aspect)
            #Execute SurfaceSlope
            arcpy.SurfaceSlope_3d(dataset, slope)
            #Execute SurfaceSlope
            print "Starting Intersect"
            arcpy.Intersect_analysis(aspect + " #;" + slope + " #", outFC, "ALL")
            print "Completed intersect for " + dataset
            del aspect, slope, outFC
    else:
        print "There are no TINs in the " + env.workspace + " directory."
except:
    # Returns any other error messages
    print arcpy.GetMessages(2)

del arcpy, listTINs

Environments

Related Topics

Licensing Information

ArcView: Requires 3D Analyst
ArcEditor: Requires 3D Analyst
ArcInfo: Requires 3D Analyst

6/10/2013