Cost Distance (Spatial Analyst)
Summary
Calculates the least accumulative cost distance for each cell to the nearest source over a cost surface.
Illustration
Usage
-
The input source data can be a feature class or raster.
-
When the input source data is a raster, the set of source cells consists of all cells in the source raster that have valid values. Cells that have NoData values are not included in the source set. The value 0 is considered a legitimate source. A source raster can be easily created using the extraction tools.
When the source input is a feature, by default, the first valid available field will be used. If no valid fields exist, the ObjectID field (for example, OID or FID, depending on the type of feature input) will be used.
-
Cell locations with NoData in the Input cost raster act as barriers in the cost surface tools. Any cell location that is assigned NoData on the input cost surface will receive NoData on all output rasters (cost distance, allocation, and back link).
-
If the input source data and the cost raster are different extents, the default output extent is the intersection of the two. To get a cost distance surface for the entire extent, choose the Union of Inputs option on the output Extent environment settings.
If a Mask has been set in the environment, all masked cells will be treated as NoData values.
When a mask has been defined in the Raster Analysis window and the cells to be masked will mask a source, the calculations will occur on the remaining source cells. The source cells that are masked will not be considered in the computations. These cell locations will be assigned NoData on all outputs (distance, allocation, and back link) rasters.
-
The Maximum distance is specified in the same cost units as those on the cost raster.
-
For the output distance raster, the least-cost distance (or minimum accumulative cost distance) of a cell to a set of source locations is the lower bound of the least-cost distances from the cell to all source locations.
-
The cost raster cannot contain values of zero since the algorithm is a multiplicative process. If your cost raster does contain values of zero, and these values represent areas of lowest cost, change values of zero to a small positive value (such as 0.01) before running Cost Distance, by first running the Con tool. If areas with a value of zero represent areas that should be excluded from the analysis, these values should be turned to NoData before running Cost Distance, by first running the Set Null tool.
Syntax
Parameter | Explanation | Data Type | |
in_source_data |
The input source locations. This is a raster or feature dataset that identifies the cells or locations to which the least accumulated cost distance for every output cell location is calculated. For rasters, the input type can be integer or floating point. | Raster Layer | Feature Layer | |
in_cost_raster |
A raster defining the impedance or cost to move planimetrically through each cell. The value at each cell location represents the cost per unit distance for moving through the cell. Each cell location value is multiplied by the cell resolution while also compensating for diagonal movement to obtain the total cost of passing through the cell. The values of the cost raster can be integer or floating point, but they cannot be negative or zero (you cannot have a negative or zero cost). | Raster Layer | |
maximum_distance (Optional) | Defines the threshold that the accumulative cost values cannot exceed. If an accumulative cost distance value exceeds this value, the output value for the cell location will be NoData. The maximum distance defines the extent for which the accumulative cost distances are calculated. The default distance is to the edge of the output raster. | Double | |
out_backlink_raster (Optional) |
The output cost back-link raster. The back-link raster contains values of 0 through 8, which define the direction or identify the next neighboring cell (the succeeding cell) along the least accumulative cost path from a cell to reach its least cost source. If the path is to pass into the right neighbor, the cell will be assigned the value 1, 2 for the lower right diagonal cell, and continuing clockwise. The value 0 is reserved for source cells. | Raster Dataset |
Return Value
Name | Explanation | Data Type |
out_distance_raster |
The output cost distance raster. The cost distance raster identifies, for each cell, the least accumulative cost distance over a cost surface to the identified source locations. A source can be a cell, a set of cells, or one or more feature locations. The output raster is of floating point type. | Raster |
Code Sample
The following Python Window script demonstrates how to use the CostDistance tool.
import arcpy from arcpy import env from arcpy.sa import * env.workspace = "C:/sapyexamples/data" outCostDist = CostDistance("source.shp", "elevation", 200000, "backlink") outCostDist.save("C:/sapyexamples/output/costdist")
Calculate the least accumulated cost distance raster from point shape file source locations.
# Name: CostDistance_Ex_02.py # Description: Calculates for each cell the least accumulative cost distance # to the nearest source over a cost surface. # Requirements: Spatial Analyst Extension # Author: ESRI # Import system modules import arcpy from arcpy import env from arcpy.sa import * # Set environment settings env.workspace = "C:/sapyexamples/data" # Set local variables inSourceData = "source.shp" inCostRaster = "elevation" maxDistance = 20000000 outBkLinkRaster = "C:/sapyexamples/output/outbklink" # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") # Execute CostDistance outCostDistance = CostDistance(inSourceData, inCostRaster, maxDistance, outBkLinkRaster) # Save the output outCostDistance.save("C:/sapyexamples/output/outcostdist")