VfInverseLinear
摘要
Defines the relationship between the vertical cost factor and the vertical relative moving angle through an inverse linear function.
插图
讨论
The VfInverseLinear object is used in the Spatial Analyst tools Path Distance, Path Distance Allocation, and Path Distance Back Link.
The vertical factor (VF) object defines the relationship between the vertical cost factor and the vertical relative moving angle (VRMA).
VF defines the vertical difficulty encountered in moving from one cell to the next.
VRMA identifies the slope angle between the FROM or processing cell and the TO cell.
The VFs are determined by the inverse values from a straight line in the VRMA-VF coordinate system. The line intercepts the y-axis, equitable to the VF factor, the value associated with the zeroFactor. The slope of the line can be identified if specified with the slope argument.
语法
参数 | 说明 | 数据类型 |
zeroFactor |
The zeroFactor will be used to position the y-intercept of the inverse linear function. (默认值为 1.0) | Double |
lowCutAngle |
The VRMA degree defining the lower threshold, below which (less than) the VFs are set to infinity. (默认值为 -45.0) | Double |
highCutAngle |
The VRMA degree defining the upper threshold, beyond which (larger than) the VFs are set to infinity. (默认值为 45.0) | Double |
slope |
Identifies the slope of the straight line in the VRMA-VF coordinate system. Slope is specified as the rise/run. For example, a 30-degree slope is 1/30, specified as 0.03333 (rise/run: 1 VF on the y axis / 30 degrees on the x axis); a -45-degree slope as -0.02222. (默认值为 -0.022222) | Double |
属性
属性 | 说明 | 数据类型 |
zeroFactor (可读写) |
The zeroFactor is used to position the y-intercept for the vertical factor class. | Double |
lowCutAngle (可读写) |
The VRMA degree defining the lower threshold, below which (less than) the VFs are set to infinity. | Double |
highCutAngle (可读写) |
The VRMA degree defining the upper threshold, beyond which (larger than) the VFs are set to infinity. | Double |
slope (可读写) |
Identifies the slope of the straight line in the VRMA-VF coordinate system. Slope is specified as the rise over the run. For example, a 30-degree slope is 1/30, specified as 0.03333 (rise/run: 1 VF on the y axis / 30 degrees on the x axis); a 90-degree slope as 0.011111. | Double |
代码示例
Demonstrates how to create a VfInverseLinear class and use it in the PathDistance tool within the Python window.
import arcpy from arcpy import env from arcpy.sa import * env.workspace = "C:/sapyexamples/data" myVerticalFactor = VfInverseLinear(1.0, -45, 45, -0.02222) outPathDist = PathDistance("source.shp", "costraster", "", "", "", "", myVerticalFactor) outPathDist.save("C:/sapyexamples/output/pathdistvfil")
Performs a PathDistance analysis using the VfInverseLinear class.
# Name: VfInverseLinear_Ex_02.py # Description: Uses the VfInverseLinear object to execute the PathDistance tool. # Requirements: Spatial Analyst Extension # Import system modules import arcpy from arcpy import env from arcpy.sa import * # Set environment settings env.workspace = "C:/sapyexamples/data" # Set local variables inSourceData = "source.shp" inCostRaster = "costraster" # Create the VfInverseLinear Object zeroFactor = 1.0 lowCutAngle = -45 highCutAngle = 45 slope = -0.02222 myVerticalFactor = VfInverseLinear(zeroFactor, lowCutAngle, highCutAngle, slope) # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") # Execute PathDistance outPathDist = PathDistance(inSourceData, inCostRaster, "", "", "", "", myVerticalFactor) # Save the output outPathDist.save("C:/sapyexamples/output/pathdistvfil2")