创建位置分配图层 (网络分析)

摘要

创建位置分配网络分析图层并设置其分析属性。位置分配分析图层对于从一组可能位置中选择指定数量的设施点(以便以最佳且高效的方式将需求点分配给设施点)十分有用。

用法

语法

MakeLocationAllocationLayer_na (in_network_dataset, out_network_analysis_layer, impedance_attribute, {loc_alloc_from_to}, {loc_alloc_problem_type}, {number_facilities_to_find}, {impedance_cutoff}, {impedance_transformation}, {impedance_parameter}, {target_market_share}, {accumulate_attribute_name}, {UTurn_policy}, {restriction_attribute_name}, {hierarchy}, {output_path_shape})
参数说明数据类型
in_network_dataset

将对其执行位置分配分析的网络数据集。

Network Dataset Layer
out_network_analysis_layer

要创建的位置分配网络分析图层的名称。

String
impedance_attribute

分析过程中用作阻抗的成本属性。

String
loc_alloc_from_to
(可选)

指定计算网络成本时设施点和请求点之间的行驶方向。

  • FACILITY_TO_DEMAND行驶方向从设施点到请求点。
  • DEMAND_TO_FACILITY行驶方向从请求点到设施点。

使用此选项可根据行驶方向,影响具有单向限制和不同阻抗的网络上的请求点到设施点的分配。例如,从请求点驾车到达设施点可能需要 15 分钟,但从设施点行驶至请求点仅需 10 分钟。

消防部门通常使用设施点到请求点设置,因为他们需要关注从消防站行驶到紧急救援位置所花的时间。零售商店则更关注顾客到达商店所花的时间;因此,商店通常使用请求点到设施点选项。

String
loc_alloc_problem_type
(可选)

将要求解的问题类型。问题类型的选择取决于要定位的设施点种类。不同种类的设施点具有不同的优先级和约束。

  • MINIMIZE_IMPEDANCE此选项可解决仓库位置问题。它选择一组使加权阻抗(请求的位置乘以到最近设施点的阻抗)的总和最小的设施点。此问题类型通常称为 P 中位数问题。
  • MAXIMIZE_COVERAGE此选项可解决消防站位置问题。它选择了多个设施点以保证所有或最大数量的请求点处于指定的阻抗中断范围内。
  • MINIMIZE_FACILITIES此选项可解决消防站位置问题。它将选择当在指定的阻抗中断范围内覆盖了所有或最大数量的请求点时所需要的设施点的最小数量。
  • MAXIMIZE_ATTENDANCE此选项可解决邻域存储位置问题,其中分配给最近所选设施点的请求比例将随距离的增加而降低。已选择最大化总分配请求点的设施点集。大于指定的阻抗中断的请求点不会影响所选的设施点集。
  • MAXIMIZE_MARKET_SHARE此选项可解决竞争性设施点的位置问题。它选择当存在竞争性设施点时可最大化市场份额的设施点。重力模型概念用于确定分配给每个设施点的请求点比例。已选择最大化总分配请求点的设施点集。
  • TARGET_MARKET_SHARE此选项可解决竞争性设施点的位置问题。它选择当存在竞争性设施点时可达到指定目标市场份额的设施点。重力模型概念用于确定分配给每个设施点的请求点比例。已选择的最小设施点量需达到指定的目标市场份额。
String
number_facilities_to_find
(可选)

指定求解程序将查找的设施点数。

当要查找的设施点多于所需设施点时,FacilityType 值为“必需”的设施点将始终为解的一部分;要选择的任何额外设施点都将从候选设施点中选取。

在求解前所有 FacilityType 值为“已选”的设施点在求解时都将视为候选设施点。

对于 MINIMIZE_FACILITIES 问题类型不会考虑参数值,因为求解程序会确定最小的设施点数来查找最大的覆盖范围。

对于 TARGET_MARKET_SHARE 问题类型,参数值会被覆盖,因为求解程序会搜索要占有指定市场份额所需的最小设施点数。

Long
impedance_cutoff
(可选)

阻抗中断指定请求点可分配给设施点的最大阻抗。最大阻抗以沿网络的最小成本路径进行测量。如果请求点位于中断外部,则不会被分配。此属性可用于对人们为前往您的商店而愿意行进的最大距离,以及消防站到达社区中任一请求点所允许的最大时间进行建模。

如果设置请求点的 Cutoff_[阻抗] 属性,该属性将覆盖分析图层的阻抗中断属性。您可能会发现,乡村居民愿意走 10 英里远去往某个设施点,而城镇居民只愿意走 2 两英里的路程。此情况可以如下方式建模:将分析图层的阻抗中断值设置为 10,而将城镇地区中请求点的 Cutoff_Miles 值设置为 2。

Double
impedance_transformation
(可选)

此属性可设置对设施点与请求点间网络成本进行变换的方程。它还可与阻抗参数结合使用,指定设施点与请求点间的网络阻抗对于求解程序选择设施点的影响的严重程度。

  • LINEAR设施点和请求点之间变换的网络阻抗与它们之间的最短路径网络阻抗相同。使用此选项,阻抗参数始终设置为 1。这是默认设置。
  • POWER设施点和请求点之间变换的网络阻抗等于以最短路径网络阻抗为底,以阻抗参数所指定的数为指数的幂运算结果。将 POWER 选项与正阻抗参数结合使用可对附近的设施点指定较高的权重。
  • EXPONENTIAL设施点和请求点之间变换的网络阻抗等于以数学常量 e 为底,以最短路径网络阻抗所指定的数为指数的幂乘以阻抗参数。将 EXPONENTIAL 选项与正阻抗参数结合使用可对附近的设施点指定很高的权重。指数变换通常与阻抗中断结合使用。

如果设置请求点的 ImpedanceTransformation 属性,该属性会覆盖分析图层的“阻抗变换”属性。您可能要针对城镇居民和乡村居民使用不同的阻抗变换。可通过为分析图层设置阻抗变换以匹配乡村居民的阻抗参数,同时为城镇地区中的请求点设置阻抗参数以匹配城镇居民的阻抗参数,来执行建模。

String
impedance_parameter
(可选)

为“阻抗变换”参数中指定的方程提供参数值。当阻抗变换的类型为线性时会忽略参数值。对于幂阻抗变换和指数阻抗变换,值应非零。

如果设置请求点的 ImpedanceParameter 属性,该属性会覆盖分析图层的阻抗参数属性。您可能要针对城镇居民和乡村居民使用不同的阻抗参数。可通过为分析图层设置阻抗变换以匹配乡村居民的阻抗参数,同时为城镇地区中的请求点设置阻抗参数以匹配城镇居民的阻抗参数,来执行建模。

Double
target_market_share
(可选)

指定当位置分配问题类型参数设置为 TARGET_MARKET_SHARE 时要求解的目标市场份额百分比。它是您希望设施点解占总请求权重的百分比。求解程序会确定出为占有该值指定的目标市场份额所需的最小设施点数。

Double
accumulate_attribute_name
[accumulate_attribute_name,...]
(可选)

分析过程中要累积的成本属性的列表。这些累积属性仅供参考;求解程序仅使用阻抗属性参数所指定的成本属性来计算路径。

对于每个累积的成本属性,均会向求解程序所输出的路径中添加一个 Total_[阻抗] 属性。

String
UTurn_policy
(可选)

限制或允许停靠点间网络遍历过程中可能出现在交汇点处的 U 形转弯。

  • ALLOW_UTURNS无论在交汇点处有几条相邻边,均允许 U 形转弯。
  • NO_UTURNS在所有交汇点处均禁止 U 形转弯。不过请注意,即使已选择该设置,在网络位置仍允许 U 形转弯;但是可以通过设置个别网络位置的 CurbApproach 属性来禁止 U 形转弯。
  • ALLOW_DEAD_ENDS_ONLY除仅有一条相邻边的交汇点(死角)外,其他交汇点均禁止 U 形转弯。
  • ALLOW_DEAD_ENDS_AND_INTERSECTIONS_ONLY在恰好有两条相邻边相遇的交汇点处禁止 U 形转弯,但是交叉点(任何三条或三条以上相邻边的交汇点)或死角(仅有一条相邻边的交汇点)处允许。
String
restriction_attribute_name
[restriction_attribute_name,...]
(可选)

分析过程中要应用的约束属性的列表。

String
hierarchy
(可选)
  • USE_HIERARCHY 使用等级属性进行分析。使用等级的结果是,求解程序更偏好高阶边而不是低阶边。分等级求解的速度更快,并且可用于模拟驾驶员在可能的情况下选择在高速公路而非地方道路上行驶(即使行程可能更远)的偏好。只有输入网络数据集具有等级属性时,此选项才有效。
  • NO_HIERARCHY不使用等级属性进行分析。如果不使用等级属性,则会为网络数据集生成精确的路径。

如果未在用于执行分析的网络数据集中定义等级属性,该参数将不可用。在这种情况下,使用“#”作为参数值。

Boolean
output_path_shape
(可选)
  • NO_LINES将不会为分析的输出生成任何形状。
  • STRAIGHT_LINES输出线形状是对设施点解及其分配的请求点进行连接的直线。
String

代码示例

MakeLocationAllocationLayer 示例 1(Python 窗口)

仅使用必需参数执行此工具

import arcpy
arcpy.env.workspace = "C:/ArcTutor/Network Analyst/Tutorial/SanFrancisco.gdb"
arcpy.MakeLocationAllocationLayer_na("Transportation/Streets_ND",
                                     "StoreLocations","Minutes")
MakeLocationAllocationLayer 示例 2(Python 窗口)

使用所有参数执行此工具

import arcpy
arcpy.env.workspace = "C:/ArcTutor/Network Analyst/Tutorial/SanFrancisco.gdb"
arcpy.MakeLocationAllocationLayer_na("Transportation/Streets_ND","NewStores",
                                     "Minutes","DEMAND_TO_FACILITY",
                                     "MAXIMIZE_ATTENDANCE",3,5,"POWER",2,"",
                                     ["Minutes","Meters"],"ALLOW_UTURNS",
                                     ["Oneway"],"NO_HIERARCHY","STRAIGHT_LINES")
MakeLocationAllocationLayer 示例 3(工作流)

以下独立 Python 脚本演示了如何使用 MakeLocationAllocationLayer 工具选择将为连锁零售店生成最大业务量的商店位置。

# Name: MakeLocationAllocationLayer_Workflow.py
# Description: Choose the store locations that would generate the most business 
#              for a retail chain. For this scenario we will perform the 
#              location-allocation analysis using maximize attendance problem 
#              type. 
# Requirements: Network Analyst Extension 

#Import system modules
import arcpy
from arcpy import env

try:
    #Check out the Network Analyst extension license
    arcpy.CheckOutExtension("Network")

    #Set environment settings
    env.workspace = "C:/data/SanFrancisco.gdb"
    env.overwriteOutput = True
    
    #Set local variables
    inNetworkDataset = "Transportation/Streets_ND"
    outNALayer = "NewStoreLocations"
    impedanceAttribute = "TravelTime"
    inFacilities = "Analysis/CandidateStores"
    inDemandPoints = "Analysis/TractCentroids"
    outLayerFile = "C:/data/output" + "/" + outNALayer + ".lyr"
    
    #Create a new location-allocation layer. In this case the demand travels to
    #the facility. We wish to find 3 potential store locations out of all the
    #candidate store locations using the maximize attendance model.
    arcpy.MakeLocationAllocationLayer_na(inNetworkDataset, outNALayer,
                                         impedanceAttribute,"DEMAND_TO_FACILITY",
                                         "MAXIMIZE_ATTENDANCE",3,5, "LINEAR")
    
    #Load the candidate store locations as facilities
    arcpy.AddLocations_na(outNALayer,"Facilities",inFacilities,"","")
    
    #Load the tract centroids as demand points
    arcpy.AddLocations_na(outNALayer,"Demand Points",inDemandPoints,"","")
    
    #Solve the location-allocation layer
    arcpy.Solve_na(outNALayer)
    
    #Save the solved location-allocation layer as a layer file on disk with 
    #relative paths
    arcpy.SaveToLayerFile_management(outNALayer,outLayerFile,"RELATIVE")
    
    print "Script completed successfully"

except Exception as e:
    # If an error occurred, print line number and error message
    import traceback, sys
    tb = sys.exc_info()[2]
    print "An error occured on line %i" % tb.tb_lineno
    print str(e)

环境

相关主题


7/10/2012