VfSymLinear
Récapitulatif
Defines the relationship between the vertical cost factor and the vertical relative moving angle (VRMA) through a symmetrical linear function in either the negative or positive side of the VRMA, respectively. The two linear functions are symmetrical with respect to the VF (y) axis.
Illustration
Discussion
The VfSymLinear object is used in the Spatial Analyst tools Path Distance, Path Distance Allocation, and Path Distance Back Link.
The vertical factor (VF) object defines the relationship between the vertical cost factor and the vertical relative moving angle (VRMA).
VF defines the vertical difficulty encountered in moving from one cell to the next.
VRMA identifies the slope angle between the FROM or processing cell and the TO cell.
The VfSymLinear class is composed of two linear functions relative to the VRMAs that are symmetrical to the VF (y) axis. Both lines intercept the y-axis at the VF value associated with the zeroFactor. The slope of the lines is defined as a single slope relative to the positive VRMA using the slope vertical factor argument, which is mirrored to the negative VRMAs.
Syntaxe
Paramètre | Explication | Type de données |
zeroFactor |
The zeroFactor will be used to position the y-intercept of the symmetric linear function. (La valeur par défaut est 1.0) | Double |
lowCutAngle |
The VRMA degree defining the lower threshold, below which (less than) the VFs are set to infinity. (La valeur par défaut est -90.0) | Double |
highCutAngle |
The VRMA degree defining the upper threshold, beyond which (larger than) the VFs are set to infinity. (La valeur par défaut est 90.0) | Double |
slope |
Identifies the slope of the straight line in the VRMA-VF coordinate system. Slope is specified as the rise/run. For example, a 30-degree slope is 1/30, specified as 0.03333 (rise/run: 1 VF on the y axis / 30 degrees on the x axis); a 90-degree slope as 0.011111. (La valeur par défaut est 0.011111) | Double |
Propriétés
Propriété | Explication | Type de données |
zeroFactor (Lecture et écriture) |
The zeroFactor is used to position the y-intercept for the vertical factor class. | Double |
lowCutAngle (Lecture et écriture) |
The VRMA degree defining the lower threshold, below which (less than) the VFs are set to infinity. | Double |
highCutAngle (Lecture et écriture) |
The VRMA degree defining the upper threshold, beyond which (larger than) the VFs are set to infinity. | Double |
slope (Lecture et écriture) |
Identifies the slope of the straight line in the VRMA-VF coordinate system. Slope is specified as the rise over the run. For example, a 30-degree slope is 1/30, specified as 0.03333 (rise/run: 1 VF on the y axis / 30 degrees on the x axis); a 90-degree slope as 0.011111. | Double |
Exemple de code
Demonstrates how to create a VfSymLinear class and use it in the PathDistance tool within the Python window.
import arcpy from arcpy import env from arcpy.sa import * env.workspace = "C:/sapyexamples/data" myVerticalFactor = VfSymLinear(1.0, -90, 90, -0.01111) outPathDist = PathDistance("source.shp", "costraster", "", "", "", "", myVerticalFactor) outPathDist.save("C:/sapyexamples/output/pathdistvfsl")
Performs a PathDistance analysis using the VfSymLinear class.
# Name: VfSymLinear_Ex_02.py # Description: Uses the VfSymLinear object to execute the PathDistance tool # Requirements: Spatial Analyst Extension # Import system modules import arcpy from arcpy import env from arcpy.sa import * # Set environment settings env.workspace = "C:/sapyexamples/data" # Set local variables inSourceData = "source.shp" inCostRaster = "costraster" # Create the VfSymLinear Object zeroFactor = 1.0 lowCutAngle = -90 highCutAngle = 90 slope = -0.01111 myVerticalFactor = VfSymLinear(zeroFactor, lowCutAngle, highCutAngle, slope) # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") # Execute PathDistance outPathDist = PathDistance(inSourceData, inCostRaster, "", "", "", "", myVerticalFactor) # Save the output outPathDist.save("C:/sapyexamples/output/pathdistvfsl2")