KrigingModelUniversal
Resumen
Defines the Universal Kriging model. The available model types are Linear with linear drift and Linear with quadratic drift.
Debate
The KrigingModelUniversal object is used in the Kriging tool.
The Universal Kriging types (Linear with linear drift and Linear with quadratic drift) assume that there is a structural component present and that the local trend varies from one location to another.
Universal Kriging assumes the model:
Z(s) = µ(s) + ε(s)
A default value for lagSize is initially set to the default output cell size.
For majorRange, partialSill, and nugget, a default value will be calculated internally if nothing is specified.
Sintaxis
Parámetro | Explicación | Tipo de datos |
semivariogramType |
Semivariogram model to be used.
(El valor predeterminado es LINEARDRIFT) | String |
lagSize |
The lag size to be used in model creation. The default is the output raster cell size. | Double |
majorRange |
Represents a distance beyond which there is little or no correlation. | Double |
partialSill |
The difference between the nugget and the sill. | Double |
nugget |
Represents the error and variation at spatial scales too fine to detect. The nugget effect is seen as a discontinuity at the origin. | Double |
Propiedades
Propiedad | Explicación | Tipo de datos |
semivariogramType (Lectura y escritura) |
Semivariogram model to be used.
| String |
lagSize (Lectura y escritura) |
The lag size to be used in model creation. The default is the output raster cell size. | Double |
majorRange (Lectura y escritura) |
Represents a distance beyond which there is little or no correlation. | Double |
partialSill (Lectura y escritura) |
The difference between the nugget and the sill. | Double |
nugget (Lectura y escritura) |
Represents the error and variation at spatial scales too fine to detect. The nugget effect is seen as a discontinuity at the origin. | Double |
Ejemplo de código
Demonstrates how to create a KrigingModelUniversal object and use it in the Kriging tool within the Python window.
import arcpy from arcpy import env from arcpy.sa import * env.workspace = "C:/sapyexamples/data" kModelUniversal = KrigingModelUniversal("LINEARDRIFT", 70000, 250000, 180000, 34000) outKrigingUni1 = Kriging("ca_ozone_pts.shp", "ELEVATION", kModelUniversal, 2000, RadiusVariable(),"") outKrigingUni1.save("C:/sapyexamples/output/kuniversal1")
Calculates a Kriging surface using the KrigingModelUniversal object.
# Name: KrigingModelUniversal_Ex_02.py # Description: Uses the KrigingModelUniversal object to execute the Kriging tool. # Requirements: Spatial Analyst Extension # Import system modules import arcpy from arcpy import env from arcpy.sa import * # Set environment settings env.workspace = "C:/sapyexamples/data" # Set local variables inPointFeature = "ca_ozone_pts.shp" outVarRaster = "C:/sapyexamples/output/uvariance2" # Create KrigingModelUniversal Object lagSize = 70000 majorRange = 250000 partialSill = 180000 nugget = 34000 kModelUniversalObj = KrigingModelUniversal("LINEARDRIFT", lagSize, majorRange, partialSill, nugget) # Check out the ArcGIS Spatial Analyst extension license arcpy.CheckOutExtension("Spatial") # Execute outKrigingUni2 = Kriging(inPointFeature, "ELEVATION", kModelUniversalObj, 2000, RadiusFixed(200000, 10), outVarRaster) # Save the output outKrigingUni2.save("C:/sapyexamples/output/kuniversal2")