Observer Points (3D Analyst)

Summary

Identifies which observer points are visible from each raster surface location.

Learn more about how Observer Points works

Usage

Syntax

ObserverPoints_3d (in_raster, in_observer_point_features, out_raster, {z_factor}, {curvature_correction}, {refractivity_coefficient})
ParameterExplanationData Type
in_raster

The input surface raster.

Raster Layer
in_observer_point_features

The point feature class that identifies the observer locations.

The maximum number of points allowed is 16.

Feature Layer
out_raster

The output raster.

The output identifies exactly which observer points are visible from each raster surface location.

Raster Dataset
z_factor
(Optional)

Number of ground x,y units in one surface z unit.

The z-factor adjusts the units of measure for the z units when they are different from the x,y units of the input surface. The z-values of the input surface are multiplied by the z-factor when calculating the final output surface.

If the x,y units and z units are in the same units of measure, the z-factor is 1. This is the default.

If the x,y units and z units are in different units of measure, the z-factor must be set to the appropriate factor, or the results will be incorrect. For example, if your z units are feet and your x,y units are meters, you would use a z-factor of 0.3048 to convert your z units from feet to meters (1 foot = 0.3048 meter).

Double
curvature_correction
(Optional)

Allows correction for the earth's curvature.

  • FLAT_EARTH No curvature correction will be applied. This is the default.
  • CURVED_EARTH Curvature correction will be applied.
Boolean
refractivity_coefficient
(Optional)

Coefficient of the refraction of visible light in air.

The default value is 0.13.

Double

Code Sample

ObserverPoints example 1 (Python window)

This example identifies exactly which observer points are visible from each raster surface location.

import arcpy
from arcpy import env
env.workspace = "C:/data"
arcpy.ObserverPoints_3d("elevation","observers.shp", "C:/output/outobspnt01", 
                        1, "CURVED_EARTH", 0.13)
ObserverPoints example 2 (stand-alone script)

This example identifies exactly which observer points are visible from each raster surface location.

# Name: ObserverPoints_3d_Ex_02.py
# Description: Identifies exactly which observer points are visible 
#              from each raster surface location.
# Requirements: 3D Analyst Extension

# Import system modules
import arcpy
from arcpy import env

# Set environment settings
env.workspace = "C:/data"

# Set local variables
inRaster = "elevation"
inObsPoints = "observers.shp"
outRaster = "C:/output/outobspnt02"
zFactor = 1
useEarthCurv = "CURVED_EARTH"
refractionVal = 0.13

# Check out the ArcGIS 3D Analyst extension license
arcpy.CheckOutExtension("3D")

# Execute ObserverPoints
arcpy.ObserverPoints_3d(inRaster, inObsPoints, outRaster, zFactor, 
                        useEarthCurv, refractionVal)

Environments

Related Topics

Licensing Information

ArcView: Requires 3D Analyst or Spatial Analyst
ArcEditor: Requires 3D Analyst or Spatial Analyst
ArcInfo: Requires 3D Analyst or Spatial Analyst

6/10/2013