IDW (Geostatisical Analyst)

Zusammenfassung

Uses the measured values surrounding the prediction location to predict a value for any unsampled location, based on the assumption that things that are close to one another are more alike than those that are farther apart.

Verwendung

Syntax

IDW_ga (in_features, z_field, out_ga_layer, {out_raster}, {cell_size}, {power}, {search_neighborhood}, {weight_field})
ParameterErläuterungDatentyp
in_features

The input point features containing the z-values to be interpolated.

Feature Layer
z_field

Field that holds a height or magnitude value for each point. This can be a numeric field or the Shape field if the input features contain z-values or m-values.

Field
out_ga_layer

The geostatistical layer produced. This layer is required output only if no output raster is requested.

Geostatistical Layer
out_raster
(optional)

The output raster. This raster is required output only if no output geostatistical layer is requested.

Raster Dataset
cell_size
(optional)

The cell size at which the output raster will be created.

This value can be explicitly set under Raster Analysis from the Environment Settings. If not set, it is the shorter of the width or the height of the extent of the input point features, in the input spatial reference, divided by 250.

Analysis Cell Size
power
(optional)

The exponent of distance that controls the significance of surrounding points on the interpolated value. A higher power results in less influence from distant points.

Double
search_neighborhood
(optional)

Defines which surrounding points will be used to control the output. There are two options: Standard and Smooth. Standard is the default.

This is a Search Neighborhood class (SearchNeighborhoodStandard and SearchNeighborhoodSmooth).

Standard

  • Major semiaxis — The major semi-axis value of the searching neighborhood.
  • Minor semiaxis — The minor semi-axis value of the searching neighborhood.
  • Angle — The angle of rotation for the axis (circle) or semi-major axis (ellipse) of the moving window.
  • Maximum neighbors — The maximum number of neighbors that will be used to estimate the value at the unknown location.
  • Minimum neighbors — The minimum number of neighbors that will be used to estimate the value at the unknown location.
  • Sector type — The geometry of the neighborhood.
    • One sector - Single ellipse
    • Four sectors - Ellipse divided in four sectors.
    • Four sectors shifted - Ellipse divided in four sectors and shifted 45 degrees.
    • Eight sectors - Ellipse divided into eight sectors.

Smooth

  • Major semiaxis — The major semi-axis value of the searching neighborhood.
  • Minor semiaxis — The minor semi-axis value of the searching neighborhood.
  • Angle — The angle of rotation for the axis (circle) or semi-major axis (ellipse) of the moving window.
  • Smoothing factor — The Smooth Interpolation option creates an outer ellipse and an inner ellipse at a distance equal to the Major Semiaxis multiplied by the Smoothing factor. The points that fall outside the smaller ellipse but inside the largest ellipse are weighted using a sigmoidal function with a value between zero and one.
Geostatistical Search Neighborhood
weight_field
(optional)

Used to emphasize an observation. The larger the weight, the more impact it has on the prediction. For coincident observations, assign the largest weight to the most reliable measurement.

Field

Codebeispiel

IDW (Python window)

Interpolate a series of point features onto a raster.

import arcpy
arcpy.env.workspace = "C:/gapyexamples/data"
arcpy.IDW_ga("ca_ozone_pts", "OZONE", "outIDW", "C:/gapyexamples/output/idwout",
             "2000", "2", arcpy.SearchNeighborhoodStandard(300000, 300000, 0, 15, 10, "ONE_SECTOR"), "")
IDW (stand-alone script)

Interpolate a series of point features onto a raster.

# Name: InverseDistanceWeighting_Example_02.py
# Description: Interpolate a series of point features onto a rectangular raster
#   using Inverse Distance Weighting (IDW).
# Requirements: Geostatistical Analyst Extension

# Import system modules
import arcpy

# Set environment settings
arcpy.env.workspace = "C:/gapyexamples/data"

# Set local variables
inPointFeatures = "ca_ozone_pts.shp"
zField = "OZONE"
outLayer = "outIDW"
outRaster = "C:/gapyexamples/output/idwout"
cellSize = 2000.0
power = 2

# Set variables for search neighborhood
majSemiaxis = 300000
minSemiaxis = 300000
angle = 0
maxNeighbors = 15
minNeighbors = 10
sectorType = "ONE_SECTOR"
searchNeighbourhood = arcpy.SearchNeighborhoodStandard(majSemiaxis, minSemiaxis,
                                                       angle, maxNeighbors,
                                                       minNeighbors, sectorType)

# Check out the ArcGIS Geostatistical Analyst extension license
arcpy.CheckOutExtension("GeoStats")

# Execute IDW
arcpy.IDW_ga(inPointFeatures, zField, outLayer, outRaster, cellSize, power,
             searchNeighbourhood)

Umgebungen

Verwandte Themen

Lizenzinformationen

ArcView: Erfordert Geostatistical Analyst
ArcEditor: Erfordert Geostatistical Analyst
ArcInfo: Erfordert Geostatistical Analyst

7/10/2012